Algebraic bosonization: The study of the Heisenberg and Calogero-Sutherland models

被引:8
作者
Frau, M
Sciuto, S
Lerda, A
Zemba, GR
机构
[1] IST NAZL FIS NUCL, I-10125 TURIN, ITALY
[2] UNIV TURIN, FAC SCI MFN 2, DIPARTIMENTO SCI & TECHNOL AVANZATE, I-10125 TURIN, ITALY
[3] UNIV NACL CUYO, INST BALSEIRO, RA-8400 SAN CARLOS BARILO, RIO NEGRO, ARGENTINA
[4] COMIS NACL ENERGIA ATOM, CTR ATOM BARILOCHE, RA-8400 SAN CARLOS BARILO, RIO NEGRO, ARGENTINA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1997年 / 12卷 / 25期
关键词
D O I
10.1142/S0217751X97002498
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose an approach to treating (1 + 1)-dimensional fermionic systems based on the idea of algebraic bosonization. This amounts to decomposing the elementary low-lying excitations around the Fermi surface in terms of basic building blocks carrying a representation of the W1+infinity x (W) over bar(1+infinity) algebra, which is the dynamical symmetry of the Fermi quantum incompressible fluid. This symmetry simply expresses the local particle number current conservation at the Fermi surface. The general approach is illustrated in detail through two examples: the Keisenberg and Calogero-Sutherland models, which allow comparison with the exact Bethe ansatz solution.
引用
收藏
页码:4611 / 4661
页数:51
相关论文
共 52 条
[1]   SUBALGEBRAS OF W-1+INFINITY AND THEIR QUASIFINITE REPRESENTATIONS [J].
AWATA, H ;
FUKUMA, M ;
MATSUO, Y ;
ODAKE, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (01) :105-112
[2]   DETERMINANT FORMULAS OF QUASI-FINITE REPRESENTATION OF W1+INFINITY ALGEBRA AT LOWER LEVELS [J].
AWATA, H ;
FUKUMA, M ;
MATSUO, Y ;
ODAKE, S .
PHYSICS LETTERS B, 1994, 332 (3-4) :336-344
[3]   EIGENSYSTEM AND FULL CHARACTER FORMULA OF THE W-1+INFINITY ALGEBRA WITH C=1 [J].
AWATA, H ;
FUKUMA, M ;
ODAKE, S ;
QUANO, YH .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (04) :289-298
[4]   CHARACTER AND DETERMINANT FORMULAS OF QUASIFINITE REPRESENTATION OF THE W-1+INFINITY ALGEBRA [J].
AWATA, H ;
FUKUMA, M ;
MATSUO, Y ;
ODAKE, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :377-400
[5]   THE LARGE-N LIMIT OF EXTENDED CONFORMAL-SYMMETRIES [J].
BAKAS, I .
PHYSICS LETTERS B, 1989, 228 (01) :57-63
[6]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[7]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[8]   FINITE-SIZE EFFECTS AND INFRARED ASYMPTOTICS OF THE CORRELATION-FUNCTIONS IN 2 DIMENSIONS [J].
BOGOLIUBOV, NM ;
IZERGIN, AG ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15) :5361-5369
[9]   CRITICAL EXPONENTS FOR INTEGRABLE MODELS [J].
BOGOLIUBOV, NM ;
IZERGIN, AG ;
KOREPIN, VE .
NUCLEAR PHYSICS B, 1986, 275 (04) :687-705
[10]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&