Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction

被引:117
作者
Huo, HR
Guo, XM
Hong, SY
Jiang, MR
Liu, XY
Liao, K
机构
[1] Chinese Acad Sci, Inst Biochem & Cell Biol, Shanghai Inst Biol Sci, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, State Lab Mol Biol, Shanghai 200031, Peoples R China
关键词
D O I
10.1074/jbc.M211785200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipid rafts/caveolae are found to be essential for insulin-like growth factor (IGF)-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. In 3T3-L1 cells, IGF-1 receptor is located in lipid rafts/caveolae of the plasma membrane and can directly interact with caveolin-1, the major protein component in caveolae. Disruption of lipid rafts/caveolae by depleting cellular cholesterol with cholesterol-binding reagent, beta-methylcyclodextrin or filipin, blocks the IGF-1 receptor signaling in 3T3-L1 preadipocyte. Both hormonal induced adipocyte differentiation and mitotic clonal expansion are inhibited by lipid rafts/caveolae disruption. However, a nonspecific lipid binding reagent, xylazine, does not affect adipocyte differentiation or mitotic clonal expansion. Further studies indicate that lipid rafts/caveolae are required only for IGF-1 receptor downstream signaling and not the activation of receptor itself by ligand. Thus, our results suggest that localization in lipid rafts/caveolae and association with caveolin enable IGF-1 receptor to have a close contact with downstream signal molecules recruited into lipid rafts/caveolae and transmit the signal through these signal molecule complexes.
引用
收藏
页码:11561 / 11569
页数:9
相关论文
共 56 条
[1]   A potential SH3 domain-binding site in the Crk SH2 domain [J].
Anafi, M ;
Rosen, MK ;
Gish, GD ;
Kay, LE ;
Pawson, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (35) :21365-21374
[2]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[3]   CAP defines a second signalling pathway required for insulin-stimulated glucose transport [J].
Baumann, CA ;
Ribon, V ;
Kanzaki, M ;
Thurmond, DC ;
Mora, S ;
Shigematsu, S ;
Bickel, PE ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2000, 407 (6801) :202-207
[4]   Lipid rafts and insulin signaling [J].
Bickel, PE .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 282 (01) :E1-E10
[5]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[6]   LOWERING THE CHOLESTEROL CONTENT OF MA104 CELLS INHIBITS RECEPTOR-MEDIATED TRANSPORT OF FOLATE [J].
CHANG, WJ ;
ROTHBERG, KG ;
KAMEN, BA ;
ANDERSON, RGW .
JOURNAL OF CELL BIOLOGY, 1992, 118 (01) :63-69
[7]   Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 [J].
Chiang, SH ;
Baumann, CA ;
Kanzaki, M ;
Thurmond, DC ;
Watson, RT ;
Neudauer, CL ;
Macara, IG ;
Pessin, JE ;
Saltiel, AR .
NATURE, 2001, 410 (6831) :944-948
[8]   Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Ikezu, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6525-6533
[9]   Signal transduction - Lipid rafts and insulin action [J].
Czech, MP .
NATURE, 2000, 407 (6801) :147-148
[10]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452