The effect of an anisotropic pressure of thermal particles on resistive wall mode stability

被引:19
作者
Berkery, J. W. [1 ]
Betti, R. [2 ]
Sabbagh, S. A. [1 ]
Guazzotto, L. [3 ]
Manickam, J. [4 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[3] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
[4] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
BALLOONING STABILITY; TOKAMAK EQUILIBRIA; PLASMA; WAVES; PRINCIPLES; MHD;
D O I
10.1063/1.4901568
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 71 条
[1]   VARIATIONAL PRINCIPLE FOR LOW-FREQUENCY STABILITY OF COLLISIONLESS PLASMAS [J].
ANTONSEN, TM ;
LANE, B ;
RAMOS, JJ .
PHYSICS OF FLUIDS, 1981, 24 (08) :1465-1473
[2]   ELECTROSTATIC MODIFICATION OF VARIATIONAL-PRINCIPLES FOR ANISOTROPIC PLASMAS [J].
ANTONSEN, TM ;
LEE, YC .
PHYSICS OF FLUIDS, 1982, 25 (01) :132-142
[3]   Benchmarking kinetic calculations of resistive wall mode stability [J].
Berkery, J. W. ;
Liu, Y. Q. ;
Wang, Z. R. ;
Sabbagh, S. A. ;
Logan, N. C. ;
Park, J-K ;
Manickam, J. ;
Betti, R. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[4]   Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Balbaky, A. ;
Bell, R. E. ;
Betti, R. ;
Diallo, A. ;
Gerhardt, S. P. ;
LeBlanc, B. P. ;
Manickam, J. ;
Menard, J. E. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[5]   Investigation of multiple roots of the resistive wall mode dispersion relation, including kinetic effects [J].
Berkery, J. W. ;
Betti, R. ;
Sabbagh, S. A. .
PHYSICS OF PLASMAS, 2011, 18 (07)
[6]   Effect of Collisionality on Kinetic Stability of the Resistive Wall Mode [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Bell, R. E. ;
Gerhardt, S. P. ;
LeBlanc, B. P. ;
Yuh, H. .
PHYSICAL REVIEW LETTERS, 2011, 106 (07)
[7]   The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya) [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Reimerdes, H. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[8]   Resistive Wall Mode Instability at Intermediate Plasma Rotation [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Tritz, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[9]   STABILITY OF ALFVEN GAP MODES IN BURNING PLASMAS [J].
BETTI, R ;
FREIDBERG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (06) :1465-1474
[10]   A STABILITY-CRITERION FOR ENERGETIC PARTICLE-ALFVEN MODES [J].
BETTI, R ;
FREIDBERG, JP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (03) :538-544