Effect of 3-hydroxyproline residues on collagen stability

被引:123
作者
Jenkins, CL
Bretscher, LE
Guzei, IA
Raines, RT
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
关键词
D O I
10.1021/ja034015j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Collagen is an integral part of many types of connective tissue in animals, especially skin, bones, cartilage, and basement membranes. A fibrous protein, Collagen has a triple-helical structure, which is comprised of strands with a repeating Xaa-Yaa-Gly sequence. (L)-Proline (Pro) and 4(R)-hydroxy-(L)-proline (4-Hyp) residues occur most often in the Xaa and Yaa positions. The 4-Hyp residue is known to increase markedly the conformational stability of a Collagen triple helix. In natural Collagen, a 3(S)-hydroxy-(L)-proline (3-Hyp) residue occurs in the sequence: 3-Hyp-4-Hyp-Gly. Its effect on Collagen stability is unknown. Here, two host-guest peptides containing 3-Hyp are synthesized: (Pro-4-Hyp-Gly)(3)-3-Hyp-4-Hyp-Gly-(Pro-4Hyp-Gly)(3) (peptide 1) and (Pro-4-Hyp-Gly)(3)-Pro-3-Hyp-Gly-(Pro-4-Hyp-Gly)(3) (peptide 2). The 3-Hyp residues in these two peptides diminish triple-helical stability in comparison to Pro. This destabilization is small when 3-Hyp is in the natural Xaa position (peptide 1). There, the inductive effect of its 3-hydroxyl group diminishes slightly the strength of the interstrand 3-HypC=(OH)-H-...-NGly hydrogen bond. The destabilization is large when 3-Hyp is in the nonnatural Yaa position (peptide 2). There, its pyrrolidine ring pucker leads to inappropriate mainchain dihedral angles and interstrand steric clashes. Thus, the natural regioisomeric residues 3-Hyp and 4-Hyp have distinct effects on the conformational stability of the Collagen triple helix.
引用
收藏
页码:6422 / 6427
页数:6
相关论文
共 44 条
[1]   CRYSTAL-STRUCTURE AND MOLECULAR-STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9-ANGSTROM RESOLUTION [J].
BELLA, J ;
EATON, M ;
BRODSKY, B ;
BERMAN, HM .
SCIENCE, 1994, 266 (5182) :75-81
[2]  
BERG RA, 1973, BIOCHEM BIOPH RES CO, V52, P115, DOI 10.1016/0006-291X(73)90961-3
[3]   Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3 [J].
Berisio, R ;
Vitagliano, L ;
Mazzarella, L ;
Zagari, A .
PROTEIN SCIENCE, 2002, 11 (02) :262-270
[4]  
Berisio R, 2001, BIOPOLYMERS, V56, P8, DOI 10.1002/1097-0282(2000)56:1<8::AID-BIP1037>3.0.CO
[5]  
2-W
[6]   AN EMPIRICAL CORRECTION FOR ABSORPTION ANISOTROPY [J].
BLESSING, RH .
ACTA CRYSTALLOGRAPHICA SECTION A, 1995, 51 :33-38
[7]   Conformational stability of collagen relies on a stereoelectronic effect [J].
Bretscher, LE ;
Jenkins, CL ;
Taylor, KM ;
DeRider, ML ;
Raines, RT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (04) :777-778
[8]  
CHACKO KK, 1983, CURR SCI INDIA, V52, P660
[9]   Structure of proline 3-hydroxylase - Evolution of the family of 2-oxoglutarate dependent oxygenases [J].
Clifton, IJ ;
Hsueh, LC ;
Baldwin, JE ;
Harlos, K ;
Schofield, CJ .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (24) :6625-6636
[10]   Collagen stability: Insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations [J].
DeRider, ML ;
Wilkens, SJ ;
Waddell, MJ ;
Bretscher, LE ;
Weinhold, F ;
Raines, RT ;
Markley, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (11) :2497-2505