A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

被引:82
作者
Baek, Dongwon [1 ]
Chun, Hyun Jin [1 ]
Kang, Songhwa [1 ]
Shin, Gilok [1 ]
Park, Su Jung [1 ]
Hong, Hyewon [1 ]
Kim, Chanmin [1 ]
Kim, Doh Hoon [2 ]
Lee, Sang Yeol [1 ]
Kim, Min Chul [1 ]
Yun, Dae-Jin [1 ]
机构
[1] Gyeongsang Natl Univ, Plant Mol Biol & Biotechnol Res Ctr, Div Appl Life Sci, Plus Program BK21, Jinju 660701, Gyeongnagm, South Korea
[2] Dong A Univ, Coll Life Sci & Nat Resources, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
ABA; abiotic stress; arabidopsis; drought; microRNA; salt; SMALL RNAS; TRANSCRIPTION FACTOR; STARVATION RESPONSES; STRESS RESPONSES; MICRORNAS; IDENTIFICATION; TOLERANCE; GENES; PHO2; ACCUMULATION;
D O I
10.14348/molcells.2016.2188
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[3]   Regulation of miR399f Transcription by AtMYB2 Affects Phosphate Starvation Responses in Arabidopsis [J].
Baek, Dongwon ;
Kim, Min Chul ;
Chun, Hyun Jin ;
Kang, Songhwa ;
Park, Hyeong Cheol ;
Shin, Gilok ;
Park, Jiyoung ;
Shen, Mingzhe ;
Hong, Hyewon ;
Kim, Woe-Yeon ;
Kim, Doh Hoon ;
Lee, Sang Yeol ;
Bressan, Ray A. ;
Bohnert, Hans J. ;
Yun, Dae-Jin .
PLANT PHYSIOLOGY, 2013, 161 (01) :362-373
[4]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana [J].
Brotman, Yariv ;
Lisec, Jan ;
Meret, Michael ;
Chet, Ilan ;
Willmitzer, Lothar ;
Viterbo, Ada .
MICROBIOLOGY-SGM, 2012, 158 :139-146
[7]   Identification and characterization of small RNAs from the phloem of Brassica napus [J].
Buhtz, Anja ;
Springer, Franziska ;
Chappell, Louise ;
Baulcombe, David C. ;
Kehr, Julia .
PLANT JOURNAL, 2008, 53 (05) :739-749
[8]   Salt-responsive genes in rice revealed by cDNA microarray analysis [J].
Chao, DY ;
Luo, YH ;
Shi, M ;
Luo, D ;
Lin, HX .
CELL RESEARCH, 2005, 15 (10) :796-810
[9]   A plant microRNA regulates the adaptation of roots to drought stress [J].
Chen, Hao ;
Li, Zhuofu ;
Xiong, Liming .
FEBS LETTERS, 2012, 586 (12) :1742-1747
[10]   Epigenetic regulation of stress responses in plants [J].
Chinnusamy, Viswanathan ;
Zhu, Jian-Kang .
CURRENT OPINION IN PLANT BIOLOGY, 2009, 12 (02) :133-139