Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method

被引:55
作者
Capolino, F. [1 ]
Wilton, D. R.
Johnson, W. A.
机构
[1] Univ Siena, Dept Informat Engn, I-53100 Siena, Italy
[2] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[3] Sandia Natl Labs, Electromagnet & Plasma Phys Anal Dept, Albuquerque, NM 87185 USA
关键词
arrays; series acceleration; fast methods; green function; gratings; numerical methods; periodic structures;
D O I
10.1016/j.jcp.2006.09.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Ewald method is applied to accelerate the evaluation of the Green's function (GF) of an infinite equispaced linear array of point sources with linear phasing. Only a few terms are needed to evaluate Ewald sums, which are cast in terms of error functions and exponential integrals, to high accuracy. It is shown analytically that the choice of the standard "optimal" Ewald splitting parameter E-0 causes overflow errors at high frequencies (period large compared to the wavelength), and convergence rates are analyzed. A recipe for selecting the Ewald splitting parameter is provided. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:250 / 261
页数:12
相关论文
共 23 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Bressan M, 2000, IEEE MTT-S, P1097, DOI 10.1109/MWSYM.2000.863548
[3]   Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method [J].
Capolino, F ;
Wilton, DR ;
Johnson, WA .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (09) :2977-2984
[4]   CRITICAL DISTANCE FOR GRATING LOBE SERIES [J].
COHEN, E .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (05) :677-679
[5]   Hybrid FE BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation [J].
Eibert, TF ;
Volakis, JL ;
Wilton, DR ;
Jackson, DR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (05) :843-850
[6]  
Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253
[7]  
JACKSON DR, 1998, URSI INT S EL THEOR
[8]   AN EFFICIENT NUMERICAL EVALUATION OF THE GREEN-FUNCTION FOR THE HELMHOLTZ OPERATOR ON PERIODIC STRUCTURES [J].
JORDAN, KE ;
RICHTER, GR ;
SHENG, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 63 (01) :222-235
[9]   On the splitting parameter in the Ewald method [J].
Kustepeli, A ;
Martin, AQ .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (05) :168-170
[10]   The Green's function for the two-dimensional Helmholtz equation in periodic domains [J].
Linton, CM .
JOURNAL OF ENGINEERING MATHEMATICS, 1998, 33 (04) :377-402