The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes

被引:161
作者
Hamwi, Sami [1 ]
Meyer, Jens [3 ]
Kroeger, Michael [4 ]
Winkler, Thomas [1 ]
Witte, Marco [1 ]
Riedl, Thomas [2 ]
Kahn, Antoine [3 ]
Kowalsky, Wolfgang [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst High Frequency Technol, D-38106 Braunschweig, Germany
[2] Univ Wuppertal, Inst Elect Devices, D-42119 Wuppertal, Germany
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[4] InnovationLab GmbH, D-69115 Heidelberg, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1002/adfm.201000301
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanism of charge generation in transition metal oxide (TMO)-based charge-generation layers (CGL) used in stacked organic light-emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs(2)CO3-doped 4,7-diphenyl-1,10-phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub-OLEDs in the stacked device. Luminance current density voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n-type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole-transport material, 4,4',4"-tris(N-carbazolyl)-triphenyl amine. The role of the adjacent n-type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub-OLED.
引用
收藏
页码:1762 / 1766
页数:5
相关论文
共 25 条
[1]   Highly efficient white organic electroluminescent devices based on tandem architecture [J].
Chang, CC ;
Chen, JF ;
Hwang, SW ;
Chen, CH .
APPLIED PHYSICS LETTERS, 2005, 87 (25) :1-3
[2]   Effective connecting architecture for tandem organic light-emitting devices [J].
Chen, CW ;
Lu, YJ ;
Wu, CC ;
Wu, EHE ;
Chu, CW ;
Yang, Y .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[3]   Microcavity two-unit tandem organic light-emitting devices having a high efficiency [J].
Cho, TY ;
Lin, CL ;
Wu, CC .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[4]   Mechanism of charge generation in p-type doped layer in the connection unit of tandem-type organic light-emitting devices [J].
Gao, X. D. ;
Zhou, J. ;
Xie, Z. T. ;
Ding, B. F. ;
Qian, Y. C. ;
Ding, X. M. ;
Hou, X. Y. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[5]   White organic light-emitting diodes based on tandem structures [J].
Guo, FW ;
Ma, DG .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[6]   Electronic structure of anode interface with molybdenum oxide buffer layer [J].
Kanai, Kaname ;
Koizumi, Kenji ;
Ouchi, Satoru ;
Tsukamoto, Yoshiaki ;
Sakanoue, Kei ;
Ouchi, Yukio ;
Seki, Kazuhiko .
ORGANIC ELECTRONICS, 2010, 11 (02) :188-194
[7]   White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer [J].
Kanno, H ;
Holmes, RJ ;
Sun, Y ;
Kena-Cohen, S ;
Forrest, SR .
ADVANCED MATERIALS, 2006, 18 (03) :339-+
[8]  
Kido J., 2003, SID S, V34, P979
[9]   The effect of molybdenum oxide interlayer on organic photovoltaic cells [J].
Kim, Do Young ;
Subbiah, Jegadesan ;
Sarasqueta, Galileo ;
So, Franky ;
Ding, Huanjun ;
Irfan ;
Gao, Yongli .
APPLIED PHYSICS LETTERS, 2009, 95 (09)
[10]   Energy level alignment at a charge generation interface between 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile [J].
Kim, Yong-Ki ;
Kim, Jeong Won ;
Park, Yongsup .
APPLIED PHYSICS LETTERS, 2009, 94 (06)