Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation

被引:264
作者
Belkin, Mikhail A. [1 ]
Capasso, Federico
Belyanin, Alexey
Sivco, Deborah L.
Cho, Alfred Y.
Oakley, Douglas C.
Vineis, Christopher J.
Turner, George W.
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[3] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
[4] MIT, Lincoln Lab, Lexington, MA 02420 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphoton.2007.70
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The terahertz spectral range (lambda = 30-300 mu m) has long been devoid of compact, electrically pumped, room-temperature semiconductor sources(1-4). Despite recent progress with terahertz quantum cascade lasers(2-4), existing devices still require cryogenic cooling. An alternative way to produce terahertz radiation is frequency down-conversion in a nonlinear optical crystal using infrared or visible pump lasers(5-7). This approach offers broad spectral tunability and does work at room temperature; however, it requires powerful laser pumps and a more complicated optical set-up, resulting in bulky and unwieldy sources. Here we demonstrate a monolithically integrated device designed to combine the advantages of electrically pumped semiconductor lasers and nonlinear optical sources. Our device is a dual-wavelength quantum cascade laser(8) with the active region engineered to possess giant second-order nonlinear susceptibility associated with intersubband transitions in coupled quantum wells. The laser operates at lambda(1) = 7.6 mu m and lambda(2) = 8.7 mu m, and produces terahertz output at lambda = 60 mu m through intracavity difference-frequency generation.
引用
收藏
页码:288 / 292
页数:5
相关论文
共 25 条
[1]  
Boyd R. W., 2003, NONLINEAR OPTICS
[2]  
Bründermann E, 2000, APPL PHYS LETT, V76, P2991, DOI 10.1063/1.126555
[3]  
Butcher PN., 1990, Cambridge Studies in Modern Optics
[4]   COUPLED-QUANTUM-WELL SEMICONDUCTORS WITH GIANT ELECTRIC-FIELD TUNABLE NONLINEAR-OPTICAL PROPERTIES IN THE INFRARED [J].
CAPASSO, F ;
SIRTORI, C ;
CHO, AY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (05) :1313-1326
[5]   High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K [J].
Diehl, L. ;
Bour, D. ;
Corzine, S. ;
Zhu, J. ;
Hofler, G. ;
Loncar, M. ;
Troccoli, M. ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[6]   Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves [J].
Dupont, Emmanuel ;
Wasilewski, Zbig R. ;
Liu, H. C. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (11-12) :1157-1174
[7]   Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation [J].
Faist, J ;
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Rochat, M ;
Blaser, S .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :533-546
[8]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[9]   Surface emitting terahertz quantum cascade laser with a double-metal waveguide [J].
Fan, Jonathan A. ;
Belkin, Mikhail A. ;
Capasso, Federico ;
Khanna, Suraj ;
Lachab, Mohamed ;
Davies, A. Giles ;
Linfield, Edmund H. .
OPTICS EXPRESS, 2006, 14 (24) :11672-11680
[10]   OBSERVATION OF EXTREMELY LARGE QUADRATIC SUSCEPTIBILITY AT 9.6-10.8-MU-M IN ELECTRIC-FIELD-BIASED ALGAAS QUANTUM WELLS [J].
FEJER, MM ;
YOO, SJB ;
BYER, RL ;
HARWIT, A ;
HARRIS, JS .
PHYSICAL REVIEW LETTERS, 1989, 62 (09) :1041-1044