Wavelets for iterated function systems

被引:17
作者
Bohnstengel, Jana [1 ]
Kesseboehmer, Marc [1 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat 3, D-28349 Bremen, Germany
关键词
Wavelets; Scaling functions; Fourier basis; Limit sets; Fractals; Iterated function systems; SETS;
D O I
10.1016/j.jfa.2010.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a wavelet and a generalised Fourier basis with respect to some fractal measure given by a one-dimensional iterated function system In this paper we will not assume that these systems are given by linear contractions generalising in this way some previous work of Dutkay, Jorgensen, and Pedersen to the non-linear setting As a byproduct we ale able to provide a Fourier basis also for such linear fractals like the Middle Third Cantor Set which have been left out by previous approaches (C) 2010 Elsevier Inc. All rights reserved
引用
收藏
页码:583 / 601
页数:19
相关论文
共 10 条
[1]  
D'Andrea J, 2008, CONTEMP MATH, V451, P69
[2]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[3]  
DUTKAY D, 2006, REV MAT IBEROAM, P131
[4]  
Falconer KJ, 1999, Fractal geometry: mathematical foundations and applications
[5]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[6]   Sets of nondifferentiability for conjugacies between expanding interval maps [J].
Jordan, Thomas ;
Kesseboehmer, Marc ;
Pollicott, Mark ;
Stratmann, Bernd O. .
FUNDAMENTA MATHEMATICAE, 2009, 206 :161-183
[7]   Dense analytic subspaces in fractal L2-spaces [J].
Jorgensen, PET ;
Pedersen, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :185-228
[8]   Orthogonal harmonic analysis and scaling of fractal measures [J].
Jorgensen, PET ;
Pedersen, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03) :301-306
[9]  
Jorgensen PET, 2006, ANAL PROBABILITY WAV
[10]   Wavelets, tiling, and spectral sets [J].
Wang, Y .
DUKE MATHEMATICAL JOURNAL, 2002, 114 (01) :43-57