A nonparametric multiple choice method within the random utility framework

被引:9
作者
Huang, JC
Nychka, DW
机构
[1] Univ New Hampshire, Dept Econ, Durham, NH 03824 USA
[2] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA
[3] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
polychotomous choices; cubic smoothing splines; random utility model; welfare measurement; nonmarket valuation;
D O I
10.1016/S0304-4076(99)00072-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
Many researchers use categorical data analysis to recover individual consumption preferences, but the standard discrete choice models require restrictive assumptions. To improve the flexibility of discrete choice data analysis, we propose a nonparametric multiple choice model that applies the penalized likelihood method within the random utility framework. We show that the deterministic component of the random utility function in the model is a cubic smoothing spline function. The method subsumes the conventional conditional legit model (McFadden, 1973, in: Zarembka, P., (Ed.), Frontiers in Econometrics) as a special case. In this paper, we present the model, describe the estimator, provide the computational algorithm of the model, and demonstrate the model by applying it to nonmarket valuation of recreation sites. (C) 2000 Elsevier Science S.A. All rights reserved. JEL classification. C14.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 40 条
[1]   A generalized additive model for discrete-choice data [J].
Abe, M .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1999, 17 (03) :271-284
[2]   DISTRIBUTION-THEORY FOR THE ANALYSIS OF BINARY CHOICE UNDER UNCERTAINTY WITH NONPARAMETRIC-ESTIMATION OF EXPECTATIONS [J].
AHN, HT ;
MANSKI, CF .
JOURNAL OF ECONOMETRICS, 1993, 56 (03) :291-321
[3]   NONPARAMETRIC 2-STAGE ESTIMATION OF CONDITIONAL CHOICE-PROBABILITIES IN A BINARY CHOICE MODEL UNDER UNCERTAINTY [J].
AHN, HT .
JOURNAL OF ECONOMETRICS, 1995, 67 (02) :337-378
[4]  
ANDERSON JA, 1982, BIOMETRIKA, V69, P123, DOI 10.1093/biomet/69.1.123
[5]  
Bocicstael N.E., 1991, MEASURING DEMAND ENV
[6]   DISTRIBUTION-FREE MAXIMUM-LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL [J].
COSSLETT, SR .
ECONOMETRICA, 1983, 51 (03) :765-782
[7]   ASYMPTOTIC ANALYSIS OF PENALIZED LIKELIHOOD AND RELATED ESTIMATORS [J].
COX, DD ;
OSULLIVAN, F .
ANNALS OF STATISTICS, 1990, 18 (04) :1676-1695
[8]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[9]  
Efron B, 1982, CBMS NSF REGIONAL SE, V38
[10]   SEMI-NONPARAMETRIC MAXIMUM-LIKELIHOOD-ESTIMATION [J].
GALLANT, AR ;
NYCHKA, DW .
ECONOMETRICA, 1987, 55 (02) :363-390