Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems

被引:23
作者
Chandre, C [1 ]
Govin, M [1 ]
Jauslin, HR [1 ]
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.1536
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-roup techniques, We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a more efficient method that allows one to determine the critical coupling with high accuracy, This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties. [S1063-651X(98)02502-1].
引用
收藏
页码:1536 / 1543
页数:8
相关论文
共 32 条
[1]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[2]  
Arnold VI., 1968, Ergodic problems of classical mechanics
[3]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[4]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[5]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161
[6]  
DENZLER J, 1987, J APPL MATH PHYS, V38, P791
[7]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[8]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[9]   THRESHOLD OF GLOBAL STOCHASTICITY AND UNIVERSALITY IN HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
MOHAMEDBENKADDA, MS ;
DOVEIL, F .
PHYSICS LETTERS A, 1984, 101 (07) :309-313
[10]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261