Molecular framework for the activation of RNA-dependent protein kinase

被引:52
作者
McKenna, Sean A.
Lindhout, Darrin A.
Kim, Insil
Liu, Corey W.
Gelev, Vladimir M.
Wagner, Gerhard
Puglisi, Joseph D. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford Magnet Resonance Lab, Stanford, CA 94305 USA
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M700301200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RNA-dependent protein kinase ( PKR) plays an integral role in the antiviral response to cellular infection. PKR contains three distinct domains consisting of two conserved N-terminal double-stranded RNA ( dsRNA)- binding domains, a C-terminal Ser-Thr kinase domain, and a central 80-residue linker. Despite rich structural and biochemical data, a detailed mechanistic explanation of PKR activation remains unclear. Here we provide a framework for understanding dsRNA-dependent activation of PKR using nuclear magnetic resonance spectroscopy, dynamic light scattering, gel filtration, and autophosphorylation kinetics. In the latent state, PKR exists as an extended monomer, with an increase in self-affinity upon dsRNA association. Subsequent phosphorylation leads to efficient release of dsRNA followed by a greater increase in self-affinity. Activated PKR displays extensive conformational perturbations within the kinase domain. We propose an updated model for PKR activation in which the communication between RNA binding, central linker, and kinase domains is critical in the propagation of the activation signal and for PKR dimerization.
引用
收藏
页码:11474 / 11486
页数:13
相关论文
共 33 条
[1]   Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR [J].
Bevilacqua, PC ;
Cech, TR .
BIOCHEMISTRY, 1996, 35 (31) :9983-9994
[2]   Higher-order substrate recognition of elF2α by the RNA-dependent protein kinase PKR [J].
Dar, AC ;
Dever, TE ;
Sicheri, F .
CELL, 2005, 122 (06) :887-900
[3]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[4]   Mechanistic link between PKR dimerization, autophosphorylation, and elF2α substrate recognition [J].
Dey, M ;
Cao, C ;
Dar, AC ;
Tamura, T ;
Ozato, K ;
Sicheri, F ;
Dever, TE .
CELL, 2005, 122 (06) :901-913
[5]   Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase [J].
Gale, M ;
Katze, MG .
PHARMACOLOGY & THERAPEUTICS, 1998, 78 (01) :29-46
[6]  
Gale MJ, 1998, CLIN DIAGN VIROL, V10, P157
[7]   Mapping of the auto-inhibitory interactions of protein kinase R by nuclear magnetic resonance [J].
Gelev, Vladimir ;
Aktas, Huseyin ;
Marintchev, Assen ;
Ito, Takuhiro ;
Frueh, Dominique ;
Hemond, Michael ;
Rovnyak, David ;
Debus, Mirijam ;
Hyberts, Sven ;
Usheva, Anny ;
Halperin, Jose ;
Wagner, Gerhard .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 364 (03) :352-363
[8]   Characterization of the heparin-mediated activation of PKR, the interferon-inducible RNA-dependent protein kinase [J].
George, CX ;
Thomis, DC ;
McCormack, SJ ;
Svahn, CM ;
Samuel, CE .
VIROLOGY, 1996, 221 (01) :180-188
[9]  
Jammi NV, 2001, NUCLEIC ACIDS RES, V29, P3020
[10]   NMR VIEW - A COMPUTER-PROGRAM FOR THE VISUALIZATION AND ANALYSIS OF NMR DATA [J].
JOHNSON, BA ;
BLEVINS, RA .
JOURNAL OF BIOMOLECULAR NMR, 1994, 4 (05) :603-614