Aerosol mapping over land with imaging spectroscopy using spectral autocorrelation

被引:5
作者
Bojinski, S
Schläpfer, D
Schaepman, M
Keller, J
Itten, K
机构
[1] Univ Zurich, Dept Geog, Remote Sensing Labs, CH-8057 Zurich, Switzerland
[2] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
关键词
D O I
10.1080/01431160410001719830
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A new method for aerosol retrieval over land is proposed that makes explicit use of the contiguous, high-resolution spectral coverage of imaging spectrometers. The method is labelled Aerosol Retrieval by Interrelated Abundances (ARIA) and is based on unmixing of the short-wave infrared sensor signal by region-specific endmembers, assuming low aerosol radiative influence in this spectral region. Derived endmember abundances are transferred to the visible part of the spectrum in order to approximate surface reflectance where aerosol influence is generally strongest. Spectral autocorrelation of surface spectra is a precondition for ARIA and demonstrated using a reference spectrum database. The re-mixed surface reflectance is used as input quantity for the inversion of aerosol optical depth tau(a) at 0.55 mum wavelength on a pixel basis. Except for the choice of endmembers and the atmospheric vertical profile, no a priori assumptions on the image scene are required. The potential of the presented method for aerosol retrieval is demonstrated for an Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) scene, collected in California in 2000. Comparisons with existing aerosol retrieval methods showed encouraging results in terms of achieved spatial smoothness and degree of uncertainty of aerosol optical depth across the scene.
引用
收藏
页码:5025 / 5047
页数:23
相关论文
共 39 条
[1]   A biogeophysical approach for automated SWIR unmixing of soils and vegetation [J].
Asner, GP ;
Lobell, DB .
REMOTE SENSING OF ENVIRONMENT, 2000, 74 (01) :99-112
[2]  
Berk A., 1989, MODTRAN: a moderate resolution model for LOWTRAN 7
[3]   SPECCHIO:: a spectrum database for remote sensing applications [J].
Bojinski, S ;
Schaepman, M ;
Schläpfer, D ;
Itten, K .
COMPUTERS & GEOSCIENCES, 2003, 29 (01) :27-38
[4]   Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption [J].
Chomko, RM ;
Gordon, HR .
APPLIED OPTICS, 1998, 37 (24) :5560-5572
[5]   SATELLITE MEASUREMENT OF MASS OF SAHARA DUST IN ATMOSPHERE [J].
FRASER, RS .
APPLIED OPTICS, 1976, 15 (10) :2471-2479
[6]   Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space [J].
Gao, BC ;
Montes, MJ ;
Ahmad, Z ;
Davis, CO .
APPLIED OPTICS, 2000, 39 (06) :887-896
[7]   REMOVAL OF ATMOSPHERIC EFFECTS FROM SATELLITE IMAGERY OF OCEANS [J].
GORDON, HR .
APPLIED OPTICS, 1978, 17 (10) :1631-1636
[8]   RETRIEVAL OF WATER-LEAVING RADIANCE AND AEROSOL OPTICAL-THICKNESS OVER THE OCEANS WITH SEAWIFS - A PRELIMINARY ALGORITHM [J].
GORDON, HR ;
WANG, MH .
APPLIED OPTICS, 1994, 33 (03) :443-452
[9]  
GREEN R, 2001, 10 ANN JPL AIRB GEOS, V1, P205
[10]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248