Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods

被引:123
作者
Chen, Hsin-Wei [1 ]
Hsu, Chih-Yu [1 ]
Chen, Jian-Ging [1 ]
Lee, Kun-Mu [2 ]
Wang, Chun-Chieh [1 ]
Huang, Kuan-Chieh [1 ]
Ho, Kuo-Chuan [1 ,3 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan
[2] Ind Technol Res Inst, Photovolta Technol Ctr, Hsinchu 31040, Taiwan
[3] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan
关键词
Compression method; Dye-sensitized solar cell (DSSC); Electrophoretic deposition (EPD); PEDOT film; Photo-supercapacitor; LOW-TEMPERATURE FABRICATION; SOLAR-CELLS; EQUIVALENT-CIRCUIT; NANOPARTICLE FILMS; PERFORMANCE; ELECTRODES; POROSITY;
D O I
10.1016/j.jpowsour.2010.01.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A plastic photo-rechargeable capacitor is studied using a three-electrode configuration, separating a flexible dye-sensitized solar cell (DSSC) and a supercapacitor by sharing a common Pt electrode. The thick and uniform TiO2 film is formed by using commercially available TiO2 nanocrystals, which are treated in an isopropyl alcohol without surfactant by the electrophoretic deposition (EPD) to deposit the mesoporous TiO2 photoanode film with good adherence onto the plastic substrate. Afterward, a static mechanical compression technique as the post-treatment is employed to the electrophoretic deposited film in order to enhance the particles connection. In addition, a supercapacitor using PEDOT (poly(3,4-ethylenedioxythiophene)), which is potentiostatically electropolymerized to form a thick film, is fabricated to store the energy. The flexible DSSC part is fabricated with a TiO2 film of 10.9 mu m thickness and it can provide photoelectric conversion efficiency up to 4.37% under 1 sun illumination. The photocapacitor is made with such a flexible DSSC and a supercapacitor with ca. 0.5 mm thick PEDOT film, which provides a specific capacitance of 0.52 F cm(-2). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:6225 / 6231
页数:7
相关论文
共 33 条
[1]   Optimization of dye-sensitized solar cells prepared by compression method [J].
Boschloo, G ;
Lindström, J ;
Magnusson, E ;
Holmberg, A ;
Hagfeldt, A .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2002, 148 (1-3) :11-15
[2]   Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes [J].
Du Pasquier, A ;
Plitz, I ;
Gural, J ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 113 (01) :62-71
[3]   Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers [J].
Dürr, M ;
Schmid, A ;
Obermaier, M ;
Rosselli, S ;
Yasuda, A ;
Nelles, G .
NATURE MATERIALS, 2005, 4 (08) :607-611
[4]   Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J].
Gao, Feifei ;
Wang, Yuan ;
Shi, Dong ;
Zhang, Jing ;
Wang, Mingkui ;
Jing, Xiaoyan ;
Humphry-Baker, Robin ;
Wang, Peng ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10720-10728
[5]   Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J].
Grätzel, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 164 (1-3) :3-14
[6]  
GRINIS L, 2009, ADV FUNCT MATER, V19, P1
[7]   Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells [J].
Grinis, Larissa ;
Dor, Snir ;
Ofir, Ashi ;
Zaban, Arie .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2008, 198 (01) :52-59
[8]   Molecular photovoltaics [J].
Hagfeldt, A ;
Grätzel, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (05) :269-277
[9]   Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance [J].
Han, LY ;
Koide, N ;
Chiba, Y ;
Islam, A ;
Mitate, T .
COMPTES RENDUS CHIMIE, 2006, 9 (5-6) :645-651
[10]   Modeling of an equivalent circuit for dye-sensitized solar cells [J].
Han, LY ;
Koide, N ;
Chiba, Y ;
Mitate, T .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2433-2435