Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors

被引:110
作者
Karthikeyan, K. [1 ]
Aravindan, V. [2 ]
Lee, S. B. [1 ]
Jang, I. C. [1 ]
Lim, H. H. [1 ]
Park, G. J. [3 ]
Yoshio, M. [3 ]
Lee, Y. S. [1 ]
机构
[1] Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea
[2] Chonnam Natl Univ, Res Inst Catalysis, Kwangju 500757, South Korea
[3] Saga Univ, Dept Appl Chem, Saga 8408502, Japan
关键词
Capacitance; Carbon-coated lithium manganese silicate; Hybrid supercapacitor; Activated carbon; Specific energy; Specific power; LI2MNSIO4; LI2FESIO4;
D O I
10.1016/j.jpowsour.2009.11.138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoscale carbon-coated Li2MnSiO4 powder is prepared using a conventional solid-state method and can be used as the negative electrode in a Li2MnSiO4/activated carbon (AC) hybrid supercapacitor. Carbon-coated Li2MnSiO4 material presents a well-developed orthorhombic crystal structure with a Pmn2(1) space group, although there is a small impurity of MnO. The maximum specific capacitance of the Li2MnSiO4/AC hybrid supercapacitor is 43.2 F g(-1) at 1 mA cm(-2) current density. The cell delivers a specific energy as high as 54 Wh kg(-1) at a specific power of 150 W kg(-1) and also exhibits an excellent cycle performance with more than 99% columbic efficiency and the maintenance of 85% of its initial capacitance after 1000 cycles. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3761 / 3764
页数:4
相关论文
共 15 条
[1]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[2]  
Conway B., 2005, ELECTROCHEMICAL SUPE
[3]   Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J].
Dominko, R. ;
Conte, D. E. ;
Hanzel, D. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2008, 178 (02) :842-847
[4]   Li2MnSiO4 as a potential Li-battery cathode material [J].
Dominko, R. ;
Bele, M. ;
Kokalj, A. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :457-461
[5]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222
[6]   A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries [J].
Kalaiselvi, N ;
Doh, CH ;
Park, CW ;
Moon, SI ;
Yun, MS .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (11) :1110-1113
[7]   Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries [J].
Kim, Min Gyu ;
Cho, Jaephil .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) :1497-1514
[8]   Beyond one-electron reaction in Li cathode materials:: Designing Li2MnxFe1-xSiO4 [J].
Kokalj, Anton ;
Dominko, Robert ;
Mali, Gregor ;
Meden, Anton ;
Gaberscek, Miran ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3633-3640
[9]   Principles and applications of electrochemical capacitors [J].
Kötz, R ;
Carlen, M .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2483-2498
[10]   Synthesis, characterization and electrochemical performance of Li2MnSiO4/C cathode material by solid-state reaction [J].
Liu, Wengang ;
Xu, Yunhua ;
Yang, Rong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) :L1-L4