Module categories, weak Hopf algebras and modular invariants

被引:363
作者
Ostrik, V [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1007/s00031-003-0515-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of module categories over monoidal categories (this is a straightforward categorization of modules over rings). As applications we show that any semisimple monoidal category with finitely many simple objects is equivalent to the category of representations of a weak Hopf algebra (theorem of T. Hayashi) and we classify module categories over the fusion category of (sl) over cap (2) at a positive integer level where we meet once again the ADE classification pattern.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 45 条
[1]  
BAKALOV B, 2000, LECT TENSOR CATEGORI
[2]  
BEHREND RE, HEPTH9908036
[3]  
BEZRUKAVNIKOV R, MATHRT0102220
[4]   Modular invariants from subfactors:: Type I coupling matrices and intermediate subfactors [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :267-289
[5]   Chiral structure of modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :733-784
[6]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[7]  
Bruguières A, 2000, MATH ANN, V316, P215, DOI 10.1007/s002080050011
[8]   THE A-D-E CLASSIFICATION OF MINIMAL AND A1(1) CONFORMAL INVARIANT THEORIES [J].
CAPPELLI, A ;
ITZYKSON, C ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :1-26
[9]  
COQUEREAUX R, HEPTH0107001
[10]   4-DIMENSIONAL TOPOLOGICAL QUANTUM-FIELD THEORY, HOPF, CATEGORIES, AND THE CANONICAL BASES [J].
CRANE, L ;
FRENKEL, IB .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5136-5154