Module categories, weak Hopf algebras and modular invariants

被引:363
作者
Ostrik, V [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1007/s00031-003-0515-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of module categories over monoidal categories (this is a straightforward categorization of modules over rings). As applications we show that any semisimple monoidal category with finitely many simple objects is equivalent to the category of representations of a weak Hopf algebra (theorem of T. Hayashi) and we classify module categories over the fusion category of (sl) over cap (2) at a positive integer level where we meet once again the ADE classification pattern.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 45 条
[21]  
GRAYSON D, 1976, SPRINGER LECT NOTES, V551
[22]  
Hayashi T., MATHQA9904073
[23]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[24]  
Kato Akishi., 1987, Modern Phys. Lett. A, V2, P585, DOI [10.1142/S0217732387000732, DOI 10.1142/S0217732387000732]
[25]  
Kazhdan D., 1993, ADV SOVIET MATH, V16, P111
[26]   On a q-analogue of the McKay correspondence and the ADE classification of (sl)over-cap2 conformal field theories [J].
Kirillov, A ;
Ostrik, V .
ADVANCES IN MATHEMATICS, 2002, 171 (02) :183-227
[27]   On quiver varieties [J].
Lusztig, G .
ADVANCES IN MATHEMATICS, 1998, 136 (01) :141-182
[28]  
Lusztig G., 1987, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), V47, P235
[29]   QUASI HOPF QUANTUM SYMMETRY IN QUANTUM-THEORY [J].
MACK, G ;
SCHOMERUS, V .
NUCLEAR PHYSICS B, 1992, 370 (01) :185-230
[30]  
MOVSHEV MV, 1993, FUNCT ANAL APPL+, V27, P240