Optimal flow through the disordered lattice

被引:3
作者
Aldous, David [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
concentration of measure; disordered lattice; first passage percolation; flow; local weak convergence; random network; routing;
D O I
10.1214/009117906000000719
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider routing traffic on the N x N torus, simultaneously between all source-destination pairs, to minimize the cost Sigma e c(e)f(2) (e), where f (e) is the volume of flow across edge e and the c(e) form an i.i.d. random environment. We prove existence of a rescaled N -> infinity limit constant for minimum cost, by comparison with an appropriate analogous problem about minimum-cost flows across a M x M subsquare of the lattice.
引用
收藏
页码:397 / 438
页数:42
相关论文
共 21 条
[1]  
Ahuja RK, 1993, NETWORK FLOWS THEORY
[2]  
Aldous D. J., 2006, ALEA-LAT AM J PROBAB, V1, P89
[3]  
ALDOUS DJ, 2005, COST VOLUME RELATION
[4]   Convergence to equilibrium of random Ising models in the Griffiths phase [J].
Alexander, KS ;
Cesi, F ;
Chayes, L ;
Maes, C ;
Martinelli, F .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (3-4) :337-351
[5]  
ALON N, 1992, PROBABILISTIC METHOD
[6]  
[Anonymous], 1998, Probability theory of classical Euclidean optimization problems
[7]  
[Anonymous], [No title captured]
[8]   A short proof of the Harris-Kesten theorem [J].
Bollobas, Bela ;
Riordan, Oliver .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :470-484
[9]   BULK TRANSPORT-PROPERTIES AND EXPONENT INEQUALITIES FOR RANDOM RESISTOR AND FLOW NETWORKS [J].
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :133-152
[10]   Sharp thresholds of graph properties, and the k-sat problem [J].
Friedgut, E .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1017-1054