Monomeric dark rhodopsin holds the molecular determinants for transducin recognition: Insights from computational analysis

被引:21
作者
Dell'Orco, Daniele
Seeber, Michele
Fanelli, Francesca
机构
[1] Dulbecco Telethon Inst, Dept Chem, I-41100 Modena, Italy
[2] Univ Modena, Dept Chem, I-41100 Modena, Italy
关键词
molecular recognition; docking; GPCRs; G proteins;
D O I
10.1016/j.febslet.2007.01.074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this computational study, we have investigated the implications of rhodopsin (Rho) oligomerization in transducin (Gt) recognition. The results of docking simulations between heterotrimeric Gt and monomeric, dimeric and tetrameric inactive Rho corroborate the hypothesis that Rho and Gt can be found coupled already in the dark. Moreover, our extensive computational analysis suggests that the most likely Rho:Gt stoichiometry is the 1:1 one. This means that the essential molecular determinants for Gt recognition and activation are contained in one Rho monomer. In this respect, the complex between one Rho molecule and one heterotrimeric Gt should be considered as the functional unit. (c) 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:944 / 948
页数:5
相关论文
共 27 条
[1]  
ALVES ID, 2004, BIOPHYS J
[2]   How receptors talk to trimeric G proteins [J].
Bourne, HR .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (02) :134-142
[3]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[4]   Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent [J].
Cai, K ;
Itoh, Y ;
Khorana, FC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (09) :4877-4882
[5]   Quaternary structure predictions of transmembrane proteins starting from the monomer: A docking-based approach [J].
Casciari, D. ;
Seeber, M. ;
Fanelli, F. .
BMC BIOINFORMATICS, 2006, 7 (1)
[6]   Monomeric G-protein-coupled receptor as a functional unit [J].
Chabre, M ;
le Maire, M .
BIOCHEMISTRY, 2005, 44 (27) :9395-9403
[7]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[8]   Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin α and γ subunits [J].
Ernst, OP ;
Meyer, CK ;
Marin, EP ;
Henklein, P ;
Fu, WY ;
Sakmar, TP ;
Hofmann, KP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1937-1943
[9]   Transducin-dependent protonation of glutamic acid 134 in rhodopsin [J].
Fahmy, K ;
Sakmar, TP ;
Siebert, F .
BIOCHEMISTRY, 2000, 39 (34) :10607-10612
[10]   Computational Modeling approaches to structure-function analysis of G protein-coupled receptors [J].
Fanelli, F ;
De Benedetti, PG .
CHEMICAL REVIEWS, 2005, 105 (09) :3297-3351