Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea

被引:242
作者
Bruno, KS
Tenjo, F
Li, L
Hamer, JE
Xu, JR
机构
[1] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Sci Biol, W Lafayette, IN 47907 USA
关键词
D O I
10.1128/EC.3.6.1525-1532.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A mitogen-activated protein (MAP) kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphal growth in the rice blast fungus Magnaporthe grisea. In this study, we constructed a green fluorescent protein gene-PMK1 fusion (GFP-PMK1) to examine the expression and localization of PMK1 in M. grisea during infection-related morphogenesis. The GFP-PMK1 fusion encoded a functional protein that complemented the defect of the pmk1 deletion mutant in appressorium formation and plant infection. Although a weak GFP signal was detectable in vegetative hyphae, conidia, and germ tubes, the expression of GFP-Pmk1 was increased in appressoria and developing conidia. Nuclear localization of GFP-Pmk1 proteins was observed in a certain percentage of appressoria. A kinase-inactive allele and a nonphosphorylatable allele of PMK1 were constructed by site-directed mutagenesis. Expression of these mutant PMK1 alleles did not complement the pmk1 deletion mutant. These data confirm that kinase activity and activation of PMK1 by the upstream MAP kinase kinase are required for appressorium formation and plant infection in M. grisea. When overexpressed with the RP27 promoter in the wild-type strain, both the kinase-inactive and nonphosphorylatable PMK1 fusion proteins caused abnormal germ tube branching. Overexpression of these PMK1 mutant alleles may interfere with the function of native PMK1 during appressorium formation.
引用
收藏
页码:1525 / 1532
页数:8
相关论文
共 46 条
[1]   Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
EMBO JOURNAL, 1999, 18 (19) :5347-5358
[2]   Differential regulation of transcription: Repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins [J].
Bardwell, L ;
Cook, JG ;
Zhu-Shimoni, JX ;
Voora, D ;
Thorner, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15400-15405
[3]   Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK [J].
Bardwell, L ;
Cook, JG ;
Voora, D ;
Baggott, DM ;
Martinez, AR ;
Thorner, J .
GENES & DEVELOPMENT, 1998, 12 (18) :2887-2898
[4]   Effect of the pheromone-responsive Gα and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase [J].
Blackwell, E ;
Halatek, IM ;
Kim, HJN ;
Ellicott, AT ;
Obukhov, AA ;
Stone, DE .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1135-1150
[5]   Reef coral fluorescent proteins for visualizing fungal pathogens [J].
Bourett, TM ;
Sweigard, JA ;
Czymmek, KJ ;
Carroll, A ;
Howard, RJ .
FUNGAL GENETICS AND BIOLOGY, 2002, 37 (03) :211-220
[6]   An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis [J].
Brachmann, A ;
Schirawski, J ;
Müller, P ;
Kahmann, R .
EMBO JOURNAL, 2003, 22 (09) :2199-2210
[7]   MAPK specificity in the yeast pheromone response independent of transcriptional activation [J].
Breitkreutz, A ;
Boucher, L ;
Tyers, M .
CURRENT BIOLOGY, 2001, 11 (16) :1266-+
[8]   SELECTION FOR MATING COMPETENCE IN MAGNAPORTHE-GRISEA PATHOGENIC TO RICE [J].
CHAO, CCT ;
ELLINGBOE, AH .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1991, 69 (10) :2130-2134
[9]   Characterization of Fus3 localization: Active Fus3 localizes in complexes of varying size and specific activity [J].
Choi, KY ;
Kranz, JE ;
Mahanty, SK ;
Park, KS ;
Elion, EA .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (05) :1553-1568
[10]   Inhibitory and activating functions for MAPK Kss1 in the S-cerevisiae filamentous-growth signalling pathway [J].
Cook, JG ;
Bardwell, L ;
Thorner, J .
NATURE, 1997, 390 (6655) :85-88