Modeling nitrogen transport in the Ipswich River Basin, Massachusetts, using a hydrological simulation program in fortran (HSPF)

被引:26
作者
Filoso, S
Vallino, J
Hopkinson, C
Rastetter, E
Claessens, L
机构
[1] Marine Biol Lab, Woods Hole, MA 02543 USA
[2] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
来源
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION | 2004年 / 40卷 / 05期
关键词
nitrogen transport; land use change; watershed management; water quality; hydrochemical model; HSPF;
D O I
10.1111/j.1752-1688.2004.tb01592.x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Increased riverine nitrogen (N) fluxes have been strongly correlated with land use changes and are now one of the largest pollution problems in the coastal region of the United States. In the present study, the Hydrological Simulation Program FORTRAN (HSPF) is used to simulate transport of N in the Ipswich River basin in Massachusetts and to evaluate the effect of future land use scenarios on the water quality of the river. Model results show that under a land use change scenario constructed with restrictions from environmental protection laws, where 44 percent of the forest in the basin was converted to urban land, stream nitrate concentrations increased by about 30 percent of the present values. When an extreme land use scenario was used, and 100 percent of the forest was converted to urban land, concentrations doubled in comparison to present values. Model simulations also showed that present stream nitrate concentrations might be four times greater than they were prior to urbanization. While pervious lands with high density residential land use generated runoff with the highest N concentrations in HSPF simulations, the results suggested that denitrification in the riparian zone and wetlands coupled with the hydrology of the basin are likely to control the magnitude of nitrate loads to the aquatic system. The simulation results showed that HSPF can predict the general patterns of inorganic N concentrations in the Ipswich River and tributaries. Nevertheless, HSPF has some difficulty simulating the extreme variability of the observed data throughout the main stem and tributaries, probably because of limitations in the representation of wetlands and riparian zones in the model, where N processes such as denitrification seem to play a major role in controlling the transport of N from the terrestrial system to the river reaches.
引用
收藏
页码:1365 / 1384
页数:20
相关论文
共 25 条
[21]   Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA [J].
Van Breemen, N ;
Boyer, EW ;
Goodale, CL ;
Jaworski, NA ;
Paustian, K ;
Seitzinger, SP ;
Lajtha, K ;
Mayer, B ;
Van Dam, D ;
Howarth, RW ;
Nadelhoffer, KJ ;
Eve, M ;
Billen, G .
BIOGEOCHEMISTRY, 2002, 57 (01) :267-293
[22]   Human alteration of the global nitrogen cycle: Sources and consequences [J].
Vitousek, PM ;
Aber, JD ;
Howarth, RW ;
Likens, GE ;
Matson, PA ;
Schindler, DW ;
Schlesinger, WH ;
Tilman, D .
ECOLOGICAL APPLICATIONS, 1997, 7 (03) :737-750
[23]  
WILLIAMS MR, 2004, IN PRESS WATER RESOU
[24]  
WILLIAMS MR, 2004, IN PRESS WATER AIR S
[25]  
ZARIELLO PJ, 2000, 004029 US GEOL SURV