Imaging membrane protein helical wheels

被引:267
作者
Wang, J [1 ]
Denny, J
Tian, C
Kim, S
Mo, Y
Kovacs, F
Song, Z
Nishimura, K
Gan, Z
Fu, R
Quine, JR
Cross, TA
机构
[1] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[2] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32310 USA
[3] Florida State Univ, Dept Math, Tallahassee, FL 32310 USA
[4] Florida State Univ, Dept Chem, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
PISEMA; N-15 solid-state NMR; orientational constraints; membrane proteins; oriented samples;
D O I
10.1006/jmre.2000.2037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Resonance patterns have been observed in 2D solid-state NMR spectra of the transmembrane segment of M2 protein from Influenza A virus in oriented samples reflecting the helical wheel of this cu-helix, The center of this pattern uniquely defines the helical tilt with respect to the bilayer normal without a need for resonance assignments. The distribution of resonances from amino acid-specific labels around the "PISA wheel" defines the rotational orientation of the helix and yields preliminary site-specific assignments. With assignments high-resolution structural detail, such as differences in tilt and rotational orientation along the helical axis leading to an assessment of helical coiling, can be obtained. (C) 2000 Academic Press.
引用
收藏
页码:162 / 167
页数:6
相关论文
共 29 条
[1]   SOLID-STATE NMR STRUCTURAL STUDIES OF PEPTIDES AND PROTEINS IN MEMBRANES [J].
CROSS, TA ;
OPELLA, SJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (04) :574-581
[2]   THE TRANSMEMBRANE DOMAIN OF INFLUENZA-A M2 PROTEIN FORMS AMANTADINE-SENSITIVE PROTON CHANNELS IN PLANAR LIPID BILAYERS [J].
DUFF, KC ;
ASHLEY, RH .
VIROLOGY, 1992, 190 (01) :485-489
[3]   THE SECONDARY STRUCTURE OF INFLUENZA-A M2 TRANSMEMBRANE DOMAIN - A CIRCULAR-DICHROISM STUDY [J].
DUFF, KC ;
KELLY, SM ;
PRICE, NC ;
BRADSHAW, JP .
FEBS LETTERS, 1992, 311 (03) :256-258
[4]   Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin [J].
Farrens, DL ;
Altenbach, C ;
Yang, K ;
Hubbell, WL ;
Khorana, HG .
SCIENCE, 1996, 274 (5288) :768-770
[5]   Direct measurement of 15N chemical shift anisotropy in solution [J].
Fushman, D ;
Tjandra, N ;
Cowburn, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (42) :10947-10952
[6]   N-15 CHEMICAL-SHIFT AND N-15-C-13 DIPOLAR TENSORS FOR THE PEPTIDE-BOND IN [1-C-13]GLYCYL[N-15] GLYCINE HYDROCHLORIDE MONOHYDRATE [J].
HARBISON, GS ;
JELINSKI, LW ;
STARK, RE ;
TORCHIA, DA ;
HERZFELD, J ;
GRIFFIN, RG .
JOURNAL OF MAGNETIC RESONANCE, 1984, 60 (01) :79-82
[7]   DETERMINATION OF THE N-15 AND C-13 CHEMICAL-SHIFT TENSORS OF L-[C-13]ALANYL-L-[N-15]ALANINE FROM THE DIPOLE-COUPLED POWDER PATTERNS [J].
HARTZELL, CJ ;
WHITFIELD, M ;
OAS, TG ;
DROBNY, GP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (20) :5966-5969
[8]  
Hay A.J., 1992, SEMIN VIROL, V3, P21, DOI DOI 10.1016/J.BMC.2015.06.030
[9]   Resonance assignments for solid peptides by dipolar-mediated 13C/15N correlation solid-state NMR [J].
Hong, M ;
Griffin, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (28) :7113-7114
[10]   High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints [J].
Ketchem, RR ;
Roux, B ;
Cross, TA .
STRUCTURE, 1997, 5 (12) :1655-1669