In this paper, chaos phenomena and its influence on the power system small signal stability region (SSSR) are studied. We first review the studies on the SSSR, and point out that it is very important to make clear whether there exist some chaotic components on the boundary of the SSSR. Next, with some analytic skills of nonlinear dynamic system, we give a complete bifurcation diagram of a chaos existing in a sample power system, from a limit cycle (period-1) to chaotic state through cascading period-doubling bifurcation. The characteristics of the system energy varying in the continuous bifurcation are also shown. Thus a conclusion that chaos is always out of the Hopf bifurcation components (HB) on the SSSR's boundary. Based on this conclusion and some further studies, we confirm that, from the viewpoint of power system engineering, we do not need to consider the existence of chaos in the SSSR and its boundary. Therefore greatly simplifying the study of SSSR. Moreover, some aspects of the attractive regions of chaos and limit cycle are also studied, which is helpful to understanding some mistakes in some previous articles.