Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array

被引:84
作者
Hazen S.P. [1 ,2 ]
Pathan M.S. [3 ,4 ]
Sanchez A. [3 ]
Baxter I. [2 ]
Dunn M. [1 ,5 ]
Estes B. [1 ,5 ]
Chang H.-S. [1 ,6 ]
Zhu T. [1 ,5 ]
Kreps J.A. [1 ,6 ]
Nguyen H.T. [4 ]
机构
[1] Torrey Mesa Research Institute, Syngenta, San Diego, CA 92121
[2] The Scripps Research Institute, La Jolla, CA 92037
[3] Department of Plant/Soil Sciences, Texas Tech University, Lubbock
[4] Department of Agronomy, University of Missouri, Columbia
[5] Syngenta Biotechnology Inc., Research Triangle Park, NC 27709
[6] Diversa Corporation, San Diego, CA 92121
关键词
Drought tolerance; Expression profiling; Osmotic adjustment; Rice; Rice genome array;
D O I
10.1007/s10142-004-0126-x
中图分类号
学科分类号
摘要
Plants alter their gene expression patterns in response to drought. Sometimes these transcriptional changes are successful adaptations leading to tolerance, while in other instances the plant ultimately fails to adapt to the stress and is labeled as sensitive to that condition. We measured the expression of approximately half of the genes in rice (∼21,000) in phenotypically divergent accessions and their transgressive segregants to associate stress-regulated gene expression changes with quantitative trait loci (QTLs) for osmotic adjustment (OA, a trait associated with drought tolerance). Among the parental lines, a total of 662 transcripts were differentially expressed. Only 12 genes were induced in the low OA parent, CT9993, at moderate dehydration stress levels while over 200 genes were induced in the high OA parent, IR62266. The high and low OA parents had almost entirely different transcriptional responses to dehydration stress suggesting a complete absence of an appropriate response rather than a slower response in CT9993. Sixty-nine genes were up-regulated in all the high OA lines and nine of those genes were not induced in any of the low OA lines. The annotation of four of those genes, sucrose synthase, a pore protein, a heat shock and an LEA protein, suggests a role in maintaining high OA and membrane stability. Of the 3,954-probe sets that correspond to the QTL intervals, very few had a differential expression pattern between the high OA and low OA lines that suggest a role leading to the phenotypic variation. However, several promising candidates were identified for each of the five QTL including a snRNP auxiliary factor, a LEA protein, a protein phosphatase 2C and a Sar1 homolog. © Springer-Verlag 2004.
引用
收藏
页码:104 / 116
页数:12
相关论文
共 47 条
[21]  
Maloof J.N., Borevitz J.O., Dabi T., Lutes J., Nehring R.B., Redfern J.L., Trainer G.T., Wilson J.M., Asami T., Berry C.C., Weigel D., Chory J., Natural variation in light sensitivity of Arabidopsis, Nat. Genet., 29, pp. 441-446, (2001)
[22]  
Meyer K., Leube M.P., Grill E., A protein phosphatase 2C involved in ABA signal-transduction in Arabidopsis thaliana, Science, 264, pp. 1452-1455, (1994)
[23]  
Mittler R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7, pp. 405-410, (2002)
[24]  
Miyazaki S., Koga R., Bohnert H.J., Fukuhara T., Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum, Mol. Gen. Genet., 261, pp. 307-316, (1999)
[25]  
Morgan J.M., Tan M.K., Chromosomal location of a wheat osmoregulation gene using RFLP analysis, Aus. J. Plant Physiol., 23, pp. 803-806, (1996)
[26]  
Mutch D.M., Berger A., Mansourian R., Rytz A., Roberts M.A., The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data, BMC Bioinform., 3, (2002)
[27]  
O'Toole J.C., Cruz R.T., Response of leaf water potential, stomatal-resistance, and leaf rolling to water stress, Plant Physiol., 65, pp. 428-432, (1980)
[28]  
Ozturk Z.N., Talame V., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H.J., Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley, Plant Mol. Biol., 48, pp. 551-573, (2002)
[29]  
Price A.H., Cairns J.E., Horton P., Jones H.G., Griffiths H., Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses, J. Exp. Bot., 53, pp. 989-1004, (2002)
[30]  
Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K., Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA get-blot analyses, Plant Physiol., 133, pp. 1755-1767, (2003)