Revealing the hidden functional diversity of an enzyme family

被引:16
作者
Bastard K. [1 ,2 ,3 ]
Smith A.A.T. [1 ,2 ,3 ,5 ]
Vergne-Vaxelaire C. [1 ,2 ,3 ]
Perret A. [1 ,2 ,3 ]
Zaparucha A. [1 ,2 ,3 ]
De Melo-Minardi R. [1 ,2 ,3 ,4 ]
Mariage A. [1 ,2 ,3 ]
Boutard M. [1 ,2 ,3 ]
Debard A. [1 ,2 ,3 ]
Lechaplais C. [1 ,2 ,3 ]
Pelle C. [1 ,2 ,3 ]
Pellouin V. [1 ,2 ,3 ]
Perchat N. [1 ,2 ,3 ]
Petit J.-L. [1 ,2 ,3 ]
Kreimeyer A. [1 ,2 ,3 ]
Medigue C. [1 ,2 ,3 ]
Weissenbach J. [1 ,2 ,3 ]
Artiguenave F. [1 ,2 ,3 ]
De Berardinis V. [1 ,2 ,3 ]
Vallenet D. [1 ,2 ,3 ]
Salanoubat M. [1 ,2 ,3 ]
机构
[1] Direction des Sciences du Vivant, Commissariat A l'Energie Atomique et Aux Energies Alternatives, Institut de Génomique, Evry
[2] CNR S-UMR8030, Evry
[3] Université d'Evry Val d'Essonne, Evry
[4] Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte
[5] Sleep/Wake Research Centre, Massey University, Wellington
关键词
D O I
10.1038/nchembio.1387
中图分类号
学科分类号
摘要
Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as β-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape. © 2014 Nature America, Inc. All rights reserved.
引用
收藏
页码:42 / 49
页数:7
相关论文
共 32 条
[21]  
Bao W., Et al., Analysis of essential amino acid residues for catalytic activity of cis-epoxysuccinate hydrolase from bordetella sp. Bk-52, Appl. Microbiol. Biotechnol., (2013)
[22]  
Pelletier E., Kreimeyer A., Bocs S., Rouy Z., Gyapay G., Chouari R., Riviere D., Ganesan A., Daegelen P., Sghir A., Cohen G.N., Medigue C., Weissenbach J., Le Paslier D., Candidatus Cloacamonas acidaminovorans": Genome sequence reconstruction provides a first glimpse of a new bacterial division, Journal of Bacteriology, 190, 7, pp. 2572-2579, (2008)
[23]  
Uanschou C., Frieht R., Pittner F., What to learn from a comparative genomic sequence analysis of L-carnitine dehydrogenase, Monatshefte fur Chemie, 136, 8, pp. 1365-1381, (2005)
[24]  
Wargo M.J., Hogan D.A., Identification of genes required for pseudomonas aeruginosa carnitine catabolism, Microbiology, 155, pp. 2411-2419, (2009)
[25]  
Bar-Even A., Et al., The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters, Biochemistry, 50, pp. 4402-4410, (2011)
[26]  
Kleber H.P., Bacterial carnitine metabolism, FEMS Microbiol. Lett., 147, pp. 1-9, (1997)
[27]  
Collier L.S., Gaines III G.L., Neidle E.L., Regulation of benzoate degradation in Acinetobacter sp. Strain ADP1 by BenM, a LysR-type transcriptional activator, Journal of Bacteriology, 180, 9, pp. 2493-2501, (1998)
[28]  
Yalpani M., Willecke K., Lynen F., Triacetic acid lactone, a derailment product of fatty acid biosynthesis, Eur. J. Biochem., 8, pp. 495-502, (1969)
[29]  
Xie D., Et al., Microbial synthesis of triacetic acid lactone, Biotechnol. Bioeng., 93, pp. 727-736, (2006)
[30]  
Monticello D.J., Costilow R.N., Interconversion of valine and leucine by Clostridium sporogenes, Journal of Bacteriology, 152, 2, pp. 946-949, (1982)