The convergence analysis of inexact Gauss–Newton methods for nonlinear problems

被引:2
作者
Jinhai Chen
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Computational Optimization and Applications | 2008年 / 40卷
关键词
Nonlinear least squares problems; Inexact Gauss–Newton methods; Weak Lipschitz condition; Convergence ball;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, inexact Gauss–Newton methods for nonlinear least squares problems are studied. Under the hypothesis that derivative satisfies some kinds of weak Lipschitz conditions, the local convergence properties of inexact Gauss–Newton and inexact Gauss–Newton like methods for nonlinear problems are established with the modified relative residual control. The obtained results can provide an estimate of convergence ball for inexact Gauss–Newton methods.
引用
收藏
页码:97 / 118
页数:21
相关论文
共 27 条
[1]  
Chen J.(2005)Convergence of Gauss–Newton’s method and uniqueness of the solution Appl. Math. Comput. 170 686-705
[2]  
Li W.(2006)Convergence behaviour of inexact Newton methods under weak Lipschitz condition J. Comput. Appl. Math. 191 143-164
[3]  
Chen J.(1982)Inexact Newton methods SIAM J. Numer. Anal. 19 400-408
[4]  
Li W.(1979)Affine invariant convergence theorem for Newton methods and extension to related methods SIAM J. Numer. Anal. 16 1-10
[5]  
Dembo R.S.(1996)The numerical solution of large systems of stiff IVPs for ODEs Appl. Numer. Math. 20 5-20
[6]  
Eisenstat S.C.(2004)Convergence and uniqueness properties of Gauss–Newton’s method Comput. Math. Appl. 47 1057-1067
[7]  
Steihaug T.(1995)Inexact Newton methods for solving nonsmooth equations J. Comput. Appl. Math. 60 127-145
[8]  
Deuflhard P.(1999)Convergence behaviour of inexact Newton methods Math. Comput. 68 1605-1613
[9]  
Heindl G.(1960)On the continuity of the generalized inverse SIAM J. Appl. Math. 17 33-45
[10]  
Jackson K.R.(1980)The convergence on Newton’s method Kexue Tongbao 25 36-37