The convergence analysis of inexact Gauss–Newton methods for nonlinear problems

被引:2
作者
Jinhai Chen
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Computational Optimization and Applications | 2008年 / 40卷
关键词
Nonlinear least squares problems; Inexact Gauss–Newton methods; Weak Lipschitz condition; Convergence ball;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, inexact Gauss–Newton methods for nonlinear least squares problems are studied. Under the hypothesis that derivative satisfies some kinds of weak Lipschitz conditions, the local convergence properties of inexact Gauss–Newton and inexact Gauss–Newton like methods for nonlinear problems are established with the modified relative residual control. The obtained results can provide an estimate of convergence ball for inexact Gauss–Newton methods.
引用
收藏
页码:97 / 118
页数:21
相关论文
共 27 条
[11]  
Li C.(1999)Convergence of Newton’s method and inverse function in Banach space Math. Comput. 68 169-186
[12]  
Zhang W.H.(2000)Convergence of Newton’s method and uniqueness of the solution of equations in Banach space IMA J. Numer. Anal. 20 123-134
[13]  
Jin X.Q.(2003)Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces II Acta Math. Sinica Eng. Ser. 18 405-412
[14]  
Martinez J.M.(1973)Perturbation theory for pseudo-inverse BIT 13 217-232
[15]  
Qi L.(2000)Historical developments in convergence analysis for Newton’s and Newton-like methods J. Comput. Appl. Math. 124 1-23
[16]  
Morini B.(1982)Affine invariant convergence for Newton’s methods BIT 22 108-118
[17]  
Stewart G.W.(1983)Local convergence of difference Newton-like methods Math. Comput. 41 527-536
[18]  
Wang X.(1984)Local convergence of inexact Newton methods SIAM J. Numer. Anal. 21 583-590
[19]  
Wang X.(undefined)undefined undefined undefined undefined-undefined
[20]  
Wang X.(undefined)undefined undefined undefined undefined-undefined