Factor Space, the Theoretical Base of Data Science

被引:12
作者
Wang P.-Z. [1 ]
Liu Z.-L. [2 ]
Shi Y. [3 ]
Guo S.-C. [1 ]
机构
[1] College of Intelligence Engineering and Mathematics, Liaoning Technical University, Fuxin, 123000, Liaoning
[2] National Defense University PLA China, Beijing
[3] Research Center of Fictitious Economy and Data Science, Chinese Academy of Science, Beijing
基金
中国国家自然科学基金;
关键词
Background relation; Factor space; Factor vane; Factorial databases; Factorial neural networks; Information fusion; Sample cultivation;
D O I
10.1007/s40745-014-0017-5
中图分类号
学科分类号
摘要
This paper introduces factor space theory, which provides a general coordinate system to describe the real world and a theoretical base for data science. Based on the theory, factorial databases is presented, which carries a new kind of statistics to do intelligent analysis for coming tide of Big Data. © 2014, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:233 / 251
页数:18
相关论文
共 36 条
[31]  
Wang P.Z., Factor space and factor data bases, J Liaoning Eng Technol Univ, 32, 10, pp. 1-8, (2013)
[32]  
Wang P.Z., Guo S., Bao Y.K., Liu HT Causality analysis in factor spaces, J Liaoning Eng Technol Univ, 33, 7, pp. 1-6
[33]  
Wang H.D., Wang P.Z., Guo S.C., Improved Factor Analysis Algorithm on Factor Spaces, (2014)
[34]  
Bao Y.K., Ru H.Y., Jin S.J., Factorial Analysis, a New Algorithm of Knowledge Mining in Causality Space, (2014)
[35]  
Codd E.F., A relational model of data for large shared data banks, Commun ACM, 13, 6, pp. 377-387, (1970)
[36]  
Wang P.Z., Discussions on Hirsch conjecture and existence of strongly polynomial-time simplex variants, Ann Data Sci, 1, 1, pp. 41-71, (2014)