Real-space mapping of magnetically quantized graphene states

被引:76
作者
Miller, David L. [1 ]
Kubista, Kevin D. [1 ]
Rutter, Gregory M. [2 ]
Ruan, Ming [1 ]
de Heer, Walt A. [1 ]
Kindermann, Markus [1 ]
First, Phillip N. [1 ]
Stroscio, Joseph A. [2 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
EPITAXIAL GRAPHENE; LOCALIZATION; GRAPHITE; GAS;
D O I
10.1038/NPHYS1736
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetry of graphene's two carbon sublattices underlies its unique electronic structure and half-integer quantum Hall effect. Quantized Hall resistance requires confinement of cyclotron orbits (Landau levels) in the sample interior. Such magnetic localization may be unique in graphene, especially for the fourfold-degenerate Landau level (LL(0)) straddling graphene's charge-neutrality energy. Here we map the two-dimensional spatial distribution of LL(0), using cryogenic scanning tunnelling spectroscopy to measure the local density of states (LDOS) on electronically decoupled multilayer epitaxial graphene. Unlike disordered LDOS patterns found in conventional quantum Hall systems, we find an organized pattern of localized states and extended states that emerge above a threshold magnetic field. In distinct regions, an energy gap associated with lattice-scale variations of the LDOS suggests the sublattice (and LL(0) valley) degeneracy is locally lifted. We propose this occurs when cyclotron orbits become small enough to sample regions of small symmetry-breaking potential originating from a graphene-on-graphene moire.
引用
收藏
页码:811 / 817
页数:7
相关论文
共 46 条
[1]   Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes [J].
Alicea, Jason ;
Fisher, Matthew P. A. .
PHYSICAL REVIEW B, 2006, 74 (07)
[2]   ELECTRON LOCALIZATION IN A TWO-DIMENSIONAL SYSTEM IN STRONG MAGNETIC-FIELDS .2. LONG-RANGE SCATTERERS AND RESPONSE FUNCTIONS [J].
ANDO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (09) :3101-3111
[3]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[4]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Zero-energy state in graphene in a high magnetic field [J].
Checkelsky, Joseph G. ;
Li, Lu ;
Ong, N. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[9]   Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field [J].
Checkelsky, Joseph G. ;
Li, Lu ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 79 (11)
[10]  
Davies J. H., 1998, PHYS LOW DIMENSIONAL