Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy

被引:114
作者
Merk S. [1 ]
Blume A. [2 ]
Riederer M. [1 ]
机构
[1] Julius-von-Sachs-Inst. B., Lehrstuhl für Botanik II, Universität Würzburg, D-97082 Würzburg
[2] Fachbereich Chemie, Universität Kaiserslautern, D-67653 Kaiserslautern
关键词
Crystallinity (wax); Cuticular wax (Fourier transform infrared spectroscopy) Hedera Juglans; Phase behaviour (cuticular wax); Plant cuticle (transport properties);
D O I
10.1007/s004250050228
中图分类号
学科分类号
摘要
The phase behaviour of cuticular waxes from leaves of Hedera helix L. and Juglans regia L. was studied by Fourier transform infrared spectroscopy. For this purpose reconstituted waxes, isolated cuticular membranes, dewaxed polymer matrix membranes and whole leaves were studied in the horizontal attenuated total reflection and transmission modes. Melting curves of cuticular waxes were derived from temperature-dependent changes in the absorption maximum of the symmetric stretching mode of CH2 groups (v(s), at approx. 28562848 cm-1). With increasing temperature absorption band doublets due to CH2 scissoring (δ(sciss)) and rocking (δ(rock)) movements (at approx. 1473-1471 and 730-720 cm-1, respectively) indicative of an orthorhombic arrangement of ankyl chains merged into a single peak. The area ratio of the peaks at approx. 720 and 730 cm-1 was used as a measure for aliphatic crystallinity of plant cuticular waxes at a given temperature. The investigations of reconstituted cuticular waxes and those still embedded in isolated cuticles or in situ on the leaf produced comparable results. The findings are discussed in terms of the properties of the cuticular transport barrier.
引用
收藏
页码:44 / 53
页数:9
相关论文
共 49 条
[21]  
Holland R.F., Nielsen R.J., Infrared spectra of single crystals. Part I. Orthorhombic n-C<sub>24</sub>-H<sub>50</sub>, monoclinic n-C<sub>36</sub>H<sub>38</sub> and n-C<sub>20</sub>H<sub>42</sub>, J Mol Spectrosc, 8, pp. 383-405, (1962)
[22]  
Holloway P.J., Surface lipids of plants and animals, CRC Handbook of Chromatography, pp. 347-380, (1984)
[23]  
Iwahashi M., Yamaguchi Y., Ogura Y., Suzuki M., Dynamical structures of normal alkanes, alcohols, and fatty acids in the liquid state as determined by viscosity, self-diffusion coefficient, infrared spectra, and 13C NMR spin-lattice relaxation time measurements, Bull Chem Soc Jpn, 63, pp. 2154-2158, (1990)
[24]  
Jeffree C.E., Structure and ontogeny of plant cuticles, Plant Cuticles: an Integrated Functional Approach, pp. 33-82, (1996)
[25]  
Kirsch T., Kaffarnik F., Riederer M., Schreiber L., Cuticular permeability of the three tree species Prunus laurocerasus L. Gingko biloba L. and Juglans regia L. - Comparative investigation of the transport properties of intact leaves, isolated cuticles and reconstituted cuticular waxes, J Exp Bol, 48, pp. 1035-1045, (1997)
[26]  
Kreger D.R., Handbuch der Pflanzenphysiologie, Springer, Berlin Göttingen Heidelberg, pp. 249-269, (1958)
[27]  
LeRoux J.H., Fischer-Tropsch waxes: I. An intra-red method for the determination of crystallinity, J Appl Chem, 19, pp. 39-42, (1969)
[28]  
LeRoux J.H., Fischer-Tropsch waxes. II. Crystallinity and physical properties, J Appl Chem, 19, pp. 86-88, (1969)
[29]  
LeRoux J.H., Fischer-Tropsch waxes: V. Study of branching and its effects on crystallinity using an improved infra-red method, J Appl Chem, 20, pp. 203-207, (1970)
[30]  
Luque P., Propriedades Fisicoquímicas y Estructura de la Cuticula de Fruto de Tomate (Lycopersicon Esculentum Mill.), (1994)