Back-action-evading measurements of nanomechanical motion

被引:201
作者
Hertzberg, J. B. [2 ,3 ]
Rocheleau, T. [2 ]
Ndukum, T. [2 ]
Savva, M. [2 ]
Clerk, A. A. [4 ]
Schwab, K. C. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
美国国家科学基金会;
关键词
QUANTUM LIMIT; OSCILLATOR; CAVITY;
D O I
10.1038/NPHYS1479
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When carrying out ultrasensitive continuous measurements of position, one must ultimately confront the fundamental effects of detection back-action. Back-action forces set a lower bound on the uncertainty in the measured position, the 'standard quantum limit' (SQL). Recent measurements of nano-and micromechanical resonators are rapidly approaching this limit. Making measurements with sensitivities surpassing the SQL will require a new kind of approach: back-action-evading (BAE), quantum non-demolition measurement techniques. Here we realize a BAE measurement based on the parametric coupling between a nanomechanical and a microwave resonator. We demonstrate for the first time BAE detection of a single quadrature of motion with sensitivity four times the quantum zero-point motion of the mechanical resonator. We identify a limiting parametric instability inherent in BAE measurement, and describe how to improve the technique to surpass the SQL and permit the formation of squeezed states of motion.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 43 条
[1]   Observation of a kilogram-scale oscillator near its quantum ground state [J].
Abbott, B. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Ballmer, S. ;
Bantilan, H. ;
Barish, B. C. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barton, M. A. ;
Bastarrika, M. ;
Bayer, K. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Brinkmann, M. ;
Brooks, A. ;
Brown, D. A. ;
Brunet, G. .
NEW JOURNAL OF PHYSICS, 2009, 11
[2]  
[Anonymous], 1992, Quantum Measurement
[3]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[4]   Quantum analysis of a linear dc SQUID mechanical displacement detector [J].
Blencowe, M. P. ;
Buks, E. .
PHYSICAL REVIEW B, 2007, 76 (01)
[5]   On the measurement of a weak classical force coupled to a harmonic oscillator: Experimental progress [J].
Bocko, MF ;
Onofrio, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :755-799
[6]  
Braginskii V. B., 1975, Soviet Physics - Uspekhi, V17, P644, DOI 10.1070/PU1975v017n05ABEH004362
[7]   QUANTUM NON-DEMOLITION MEASUREMENTS [J].
BRAGINSKY, VB ;
VORONTSOV, YI ;
THORNE, KS .
SCIENCE, 1980, 209 (4456) :547-557
[8]   Thermal and back-action noises in dual-sphere gravitational-wave detectors [J].
Briant, T ;
Cerdonio, M ;
Conti, L ;
Heidmann, A ;
Lobo, A ;
Pinard, M .
PHYSICAL REVIEW D, 2003, 67 (10)
[9]   Optical phase-space reconstruction of mirror motion at the attometer level [J].
Briant, T ;
Cohadon, PF ;
Pinard, M ;
Heidmann, A .
EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (01) :131-140
[10]   Observation of back-action noise cancellation in interferometric and weak force measurements [J].
Caniard, T. ;
Verlot, P. ;
Briant, T. ;
Cohadon, P. -F. ;
Heidmann, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (11)