Generation of molecular hot electroluminescence by resonant nanocavity plasmons

被引:267
作者
Dong, Z. C. [1 ]
Zhang, X. L. [1 ]
Gao, H. Y. [1 ]
Luo, Y. [1 ]
Zhang, C. [1 ]
Chen, L. G. [1 ]
Zhang, R. [1 ]
Tao, X. [1 ]
Zhang, Y. [1 ]
Yang, J. L. [1 ]
Hou, J. G. [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
关键词
SCANNING TUNNELING MICROSCOPE; LIGHT-EMISSION; SINGLE-MOLECULE; FLUORESCENCE; SURFACE; LUMINESCENCE;
D O I
10.1038/NPHOTON.2009.257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Control of the radiative properties of functional molecules near metals is a key issue in nano-optics, and is particularly important in the fields of energy transfer and light manipulation at the nanoscale(1,2) and the development of plasmonic devices(3-5). Despite the various vibronic transitions (S(1)(v') -> S(0)(v)) available for frequency tuning of fluorescence, the molecular emissions near metals reported to date have been subject to Kasha's rule, with radiative decay from the lowest excited state (S(1)(0)) (refs 6-10). Here, we show resonant hot electroluminescence arising directly from higher vibronic levels of the singlet excited state (S(1)(v' > 0)) for porphyrin molecules confined inside a nanocavity in a scanning tunnelling microscope, by spectrally tuning the frequency of plasmons. We also demonstrate the generation of unexpected upconversion electroluminescence. These observations suggest that the local nanocavity plasmons behave like a strong coherent optical source with tunable energy, and can be used to actively control the radiative channels of molecular emitters by means of intense resonance enhancement of both excitation and emission.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 30 条
[1]   Role of tip shape in light emission from the scanning tunneling microscope [J].
Aizpurua, J ;
Apell, SP ;
Berndt, R .
PHYSICAL REVIEW B, 2000, 62 (03) :2065-2073
[2]   Electromagnetic coupling on an atomic scale [J].
Aizpurua, J ;
Hoffmann, G ;
Apell, SP ;
Berndt, R .
PHYSICAL REVIEW LETTERS, 2002, 89 (15) :156803/1-156803/4
[3]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]  
[Anonymous], 1978, The Porphyrins, DOI [10.1016/B978-0-12-220103-5.50008-8, DOI 10.1016/B978-0-12-220103-5.50008-8]
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]   Strong coupling between surface plasmons and excitons in an organic semiconductor [J].
Bellessa, J ;
Bonnand, C ;
Plenet, JC ;
Mugnier, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (03) :036404-1
[7]   PHOTON-EMISSION AT MOLECULAR RESOLUTION INDUCED BY A SCANNING TUNNELING MICROSCOPE [J].
BERNDT, R ;
GAISCH, R ;
GIMZEWSKI, JK ;
REIHL, B ;
SCHLITTLER, RR ;
SCHNEIDER, WD ;
TSCHUDY, M .
SCIENCE, 1993, 262 (5138) :1425-1427
[8]   Fluorescence and phosphorescence from individual C60 molecules excited by local electron tunneling -: art. no. 196102 [J].
Cavar, E ;
Blüm, MC ;
Pivetta, M ;
Patthey, F ;
Chergui, M ;
Schneider, WD .
PHYSICAL REVIEW LETTERS, 2005, 95 (19)
[9]  
Chance R., 1978, ADV CHEM PHYS, V37, P1, DOI DOI 10.1002/9780470142561.CH1
[10]   Quantum optics with surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)