A review of MEMS-based miroscale and nanoscale tensile and bending testing

被引:145
作者
M. A. Haque
M. T. A. Saif
机构
[1] Department of Mech./Industrial Eng., Univ. of Illinois Urbana-Champaign, Urbana, IL 61801
关键词
Bending testing; MEMS; Tensile testing; Thin films;
D O I
10.1007/BF02410523
中图分类号
学科分类号
摘要
Thin films at the micrometer and submicrometer scales exhibit mechanical properties that are different than those of bulk polycrystals. Industrial application of these materials requires accurate mechanical characterization. Also, a fundamental understanding of the deformation processes at smaller length scales is required to exploit the size and interface effects to develop new and technologically attractive materials. Specimen fabrication, small-scale force and displacement generation, and high resolution in the measurements are generic challenges in microscale and nanoscale mechanical testing. In this paper, we review small-scale materials testing techniques with special focus on the application of microelectromechanical systems (MEMS). Small size and high force and displacement resolution make MEMS suitable for small-scale mechanical testing. We discuss the development of tensile and bending testing techniques using MEMS, along with the experimental results on nanoscale aluminum specimens.
引用
收藏
页码:248 / 255
页数:7
相关论文
共 36 条
[21]  
Sharpe W.N. Jr., Jackson K.M., Hemker K.J., Xie Z., Effect of specimen size on Young's modulus and fracture strength of polysilicon, J. Microelectromech. Syst., 10, 3, pp. 317-326, (2001)
[22]  
LaVan D.A., Buchheit T.E., Testing of critical features of polysilicon MEMS, Proc. SPIE, 3880, pp. 40-44, (1999)
[23]  
Greek S., Ericson F., In situ tensile strength measurement and weibull analysis of thick-film and thin film micromachined polysilicon structures, Mater. Res. Soc. Symp. Proc., 518, pp. 51-56, (1998)
[24]  
Lee H.-J., Cornella G., Bravman J.C., Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications, Appl. Phys. Lett., 76, 23, pp. 3415-3417, (2000)
[25]  
Read D.T., Cheng Y.-W., Keller R.R., McColskey D.J., Tensile properties of free-standing aluminum thin films, Scripta Mater., 45, 5, pp. 583-589, (2001)
[26]  
Hoffman R.W., Nanomechanics, of thin films: Emphasis: Tensile properties, Mater. Res. Soc. Symp. Proc., 130, pp. 295-305, (1989)
[27]  
Ruud J.A., Josell D., Spaepen F., A new method for tensile testing of thin films, J. Mater. Res., 8, 1, pp. 112-117, (1993)
[28]  
Saif M.T.A., MacDonald N.C., Micro-instruments for submicron material studies, J. Mater. Res., 13, 12, pp. 3353-3356, (1998)
[29]  
Haque M.A., Saif M.T.A., Microscale materials testing using MEMS actuators, J. Microelectromech. Syst., 10, 1, pp. 146-162, (2001)
[30]  
Saif M.T.A., MacDonald N.C., Measurement of forces and spring constants of micro-instruments, Rev. Sci Instrum., 69, 3, pp. 1410-1422, (1998)