Discovering lactic acid bacteria by genomics

被引:163
作者
Klaenhammer T. [1 ]
Altermann E. [1 ]
Arigoni F. [1 ]
Bolotin A. [1 ]
Breidt F. [1 ]
Broadbent J. [1 ]
Cano R. [1 ]
Chaillou S. [1 ]
Deutscher J. [1 ]
Gasson M. [1 ]
van de Guchte M. [1 ]
Guzzo J. [1 ]
Hartke A. [1 ]
Hawkins T. [1 ]
Hols P. [1 ]
Hutkins R. [1 ]
Kleerebezem M. [1 ]
Kok J. [1 ]
Kuipers O. [1 ]
Lubbers M. [1 ]
Maguin E. [1 ]
McKay L. [1 ]
Mills D. [1 ]
Nauta A. [1 ]
Overbeek R. [1 ]
Pel H. [1 ]
Pridmore D. [1 ]
Saier M. [1 ]
van Sinderen D. [1 ]
Sorokin A. [1 ]
Steele J. [1 ]
O'Sullivan D. [1 ]
de Vos W. [1 ]
Weimer B. [1 ]
Zagorec M. [1 ]
Siezen R. [1 ]
机构
[1] Department of Food Science, Southeast Dairy Foods Res. Center, North Carolina State University, Raleigh
关键词
Bifidobacterium; Brevibacterium; Food; Genomics; Gram-positive bacteria; Health; Lactic acid bacteria; Lactobacillus; Lactococcus; Leuconostoc; Oenococcus; Pediococcus; Propionibacterium; Streptococcus;
D O I
10.1023/A:1020638309912
中图分类号
学科分类号
摘要
This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram-positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.
引用
收藏
页码:29 / 58
页数:29
相关论文
共 175 条
[81]  
Gindreau E., Lonvaud-Funel A., Molecular analysis of the region encoding the lytic system from Oenococcus oeni temperate bacteriophage variant phi10MC, FEMS Microbiol. Lett, 171, pp. 231-238, (1999)
[82]  
Gindreau E., Torlois S., Lonvaud-Funel A., Identification and sequence analysis of the region encoding the site-specific integration system from Leuconostoc oenos (Oenococcus oeni) temperate bacteriophage phi-10MC, FEMS Microbiol. Lett, 147, pp. 279-285, (1997)
[83]  
Godon J., Delorme C., Ehrlich S.D., Renault P., Divergence of genomic sequences between Lactococcus lactis subsp. lactis and Lactococcus lactis subsp.cremoris, Appl. Environ. Microbiol, 58, pp. 4045-4047, (1992)
[84]  
Gold R.S., Meagher Mm., Tong S., Hutkins R.W., Conway T., Cloning and expression of the Zymomonas mobilis 'Production of ethanol' genes in Lactobacillus casei, Curr. Microbiol, 33, pp. 256-260, (1996)
[85]  
Goldin B.R., Gorbach S.L., Effect of milk and Loctobacillus feeding on human intestinal bacterial enzyme activity, Am. J. Clin. Nutr, 39, pp. 756-761, (1980)
[86]  
Goldin B.R., Swenson L., Dwyer J., Sexton M., Gorbach S., Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes, J. Natl. Cancer Inst, 64, pp. 255-261, (1980)
[87]  
Gonzalez C.F., Kunka B.S., Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501, Appl. Environ. Microbiol, 46, pp. 81-89, (1983)
[88]  
Gonzalez C.F., Kunka B.S., Evidence for plasmid linkage of raffinose utilization and associated α-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus, Appl. Environ. Microbiol, 51, pp. 105-109, (1986)
[89]  
Gopal P.K., Prasad J., Smart J., Gill H.S., In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli, Int. J. Food Microbiol, 67, pp. 207-216, (2001)
[90]  
Gottschalk G., Bacterial Metabolism, (1986)