Extreme value models with application to drought data

被引:1
作者
Nadarjah S. [1 ]
机构
[1] Department of Statistics, University of Nebraska, Lincoln
来源
Allgemeines Statistisches Archiv | 2006年 / 90卷 / 3期
关键词
Drought modeling; Extreme value distributions; Products of random variables;
D O I
10.1007/s10182-006-0242-0
中图分类号
学科分类号
摘要
The exact distributions of the productXY are derived whenX andY are independent random variables and come from the extreme value distribution of Type I, the extreme value distribution of Type II or the extreme value distribution of Type III. Of the, six possible combinations, only three yield closed-form expressions for the distribution ofXY. A detailed application of the results is provided to drought data from Nebraska. © Physica-Verlag 2006.
引用
收藏
页码:403 / 418
页数:15
相关论文
共 36 条
[11]  
Harter H.L., On the distribution of Wald's classification statistic, Annals of Mathematical Statistics, 22, pp. 58-67, (1951)
[12]  
Ihaka R., Gentleman R., R: A language for data analysis and graphics, Journal of Computational and Graphical Statistics, 5, pp. 299-314, (1996)
[13]  
Kotz S., Nadarajah S., Extreme Value Distributions: Theory and Applications, (2000)
[14]  
Kuru G.A., Whyte A.G.D., Woollons R.C., Utility of reverse Weibull and extreme value density-functions to refine diameter distribution growth-estimates, Forest Ecology and Management, 48, pp. 165-174, (1992)
[15]  
Lee R.U., Statistical analysis of corrosion failures of lead-sheathed cables, Materials Performance, 31, pp. 20-23, (1992)
[16]  
Malik H.J., Trudel R., Probability density function of the product and quotient of two correlated exponential random variables, Canadian Mathematical Bulletin, 20, pp. 413-418, (1986)
[17]  
Naess A., Estimation of long return period design values for wind speeds, Journal of Engineering Mechanics-American Society of Civil Engineers, 124, pp. 252-259, (1998)
[18]  
Osella A.M., Sabbione N.C., Cernadas D.C., Statistical analysis of seismic data from North-Western and Western Argentina, Pure and Applied Geophysics, 139, pp. 277-292, (1992)
[19]  
Podolski H., The distribution of a product of n independent random variables with generalized gamma distribution, Demonstratio Mathematica, 4, pp. 119-123, (1972)
[20]  
Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and Series, 1-3, (1986)