Magnetic control of valley pseudospin in monolayer WSe2

被引:785
作者
Aivazian, G. [1 ]
Gong, Zhirui [2 ,3 ]
Jones, Aaron M. [1 ]
Chu, Rui-Lin [4 ]
Yan, J. [5 ,6 ]
Mandrus, D. G. [5 ,6 ,7 ]
Zhang, Chuanwei [4 ]
Cobden, David [1 ]
Yao, Wang [2 ,3 ]
Xu, X. [1 ,8 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[3] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China
[4] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[6] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[7] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[8] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
MOS2; POLARIZATION; STATES; SPIN;
D O I
10.1038/NPHYS3201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudospin in addition to real spies. In transition metal dichalcogenides this valley pseudospin, like real spin, is associated with a magnetic moment(1,6) that underlies the valley-dependent circular dichroism(6) that allows optical generation of valley polarization(7-9), intervalley quantum coherence(10) and the valley Hall effect(11). However, magnetic manipulation of valley pseudospin via this magnetic momentlz(12,13), analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magnetic tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons that is explained by renormalization of the excitonic spectrum due to strong exchange interactions.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 29 条
[11]   Unconventional Quantum Hall Effect and Tunable Spin Hall Effect in Dirac Materials: Application to an Isolated MoS2 Trilayer [J].
Li, Xiao ;
Zhang, Fan ;
Niu, Qian .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[12]   Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides [J].
Liu, Gui-Bin ;
Shan, Wen-Yu ;
Yao, Yugui ;
Yao, Wang ;
Xiao, Di .
PHYSICAL REVIEW B, 2013, 88 (08)
[13]  
MacNeill D., 2014, PREPRINT
[14]   The valley Hall effect in MoS2 transistors [J].
Mak, K. F. ;
McGill, K. L. ;
Park, J. ;
McEuen, P. L. .
SCIENCE, 2014, 344 (6191) :1489-1492
[15]  
Mak KF, 2012, NAT NANOTECHNOL, V7, P494, DOI [10.1038/nnano.2012.96, 10.1038/NNANO.2012.96]
[16]   Valley filter and valley valve in graphene [J].
Rycerz, A. ;
Tworzydlo, J. ;
Beenakker, C. W. J. .
NATURE PHYSICS, 2007, 3 (03) :172-175
[17]  
Srivastava A., 2014, PREPRINT
[18]  
Ugeda MM, 2014, NAT MATER, V13, P1091, DOI [10.1038/nmat4061, 10.1038/NMAT4061]
[19]   Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 [J].
Wang, G. ;
Bouet, L. ;
Lagarde, D. ;
Vidal, M. ;
Balocchi, A. ;
Amand, T. ;
Marie, X. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2014, 90 (07)
[20]  
Wang G, PREPRINT