Nonlinear response of the vacuum Rabi resonance

被引:223
作者
Bishop, Lev S. [1 ,2 ]
Chow, J. M. [1 ,2 ]
Koch, Jens [1 ,2 ]
Houck, A. A. [1 ,2 ]
Devoret, M. H. [1 ,2 ]
Thuneberg, E. [3 ]
Girvin, S. M. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Univ Oulu, Dept Phys Sci, FI-90014 Oulu, Finland
基金
芬兰科学院;
关键词
SINGLE QUANTUM-DOT; OPTICAL CAVITY; ATOM; CIRCUIT; SYSTEM; PHOTONS;
D O I
10.1038/NPHYS1154
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By using a cavity to confine the field, the strength of this interaction can be increased by many orders of magnitude, to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics(1,2) has been reached for real atoms in optical cavities(3), and for artificial atoms in circuit quantum electrodynamics(4) and quantum dot systems(5,6). A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity, an effect known as vacuum Rabi splitting. The circuit quantum electrodynamics architecture is ideally suited for going beyond this linear-response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet and the appearance of extra peaks with the characteristic root n spacing of the Jaynes-Cummings ladder. These findings constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 24 条
[1]   Photon blockade in an optical cavity with one trapped atom [J].
Birnbaum, KM ;
Boca, A ;
Miller, R ;
Boozer, AD ;
Northup, TE ;
Kimble, HJ .
NATURE, 2005, 436 (7047) :87-90
[2]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[3]   Quantum coherence with a single Cooper pair [J].
Bouchiat, V ;
Vion, D ;
Joyez, P ;
Esteve, D ;
Devoret, MH .
PHYSICA SCRIPTA, 1998, T76 :165-170
[4]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[5]  
Carmichael H.J., 1994, Cavity Quantum Electrodynamics, P381
[6]  
CARMICHAEL HJ, 2008, STAT METHODS QUANTUM, V2, P40502
[7]   Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED [J].
Deppe, Frank ;
Mariantoni, Matteo ;
Menzel, E. P. ;
Marx, A. ;
Saito, S. ;
Kakuyanagi, K. ;
Tanaka, H. ;
Meno, T. ;
Semba, K. ;
Takayanagi, H. ;
Solano, E. ;
Gross, R. .
NATURE PHYSICS, 2008, 4 (09) :686-691
[8]   Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? [J].
Devoret, Michel ;
Girvin, Steven ;
Schoelkopf, Robert .
ANNALEN DER PHYSIK, 2007, 16 (10-11) :767-779
[9]   Climbing the Jaynes-Cummings ladder and observing its √n nonlinearity in a cavity QED system [J].
Fink, J. M. ;
Goeppl, M. ;
Baur, M. ;
Bianchetti, R. ;
Leek, P. J. ;
Blais, A. ;
Wallraff, A. .
NATURE, 2008, 454 (7202) :315-318
[10]   Anharmonicity of the vacuum Rabi peaks in a many-atom system [J].
Gripp, J ;
Mielke, SL ;
Orozco, LA ;
Carmichael, HJ .
PHYSICAL REVIEW A, 1996, 54 (05) :R3746-R3749