A NUMERICAL STUDY OF THE NONLINEAR SCHRODINGER-EQUATION INVOLVING QUINTIC TERMS

被引:24
作者
CLOOT, A
HERBST, BM
WEIDEMAN, JAC
机构
[1] Department of Applied Mathematics, The University of the Orange Free State, Bloemfontein, 9300
关键词
D O I
10.1016/0021-9991(90)90094-H
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The cubic-quintic Schrödinger equation is known to possess solutions that grow unboundedly in finite time. By exploiting its conservation properties we derive sufficient conditions for bounded solutions. The computation of solutions near the critical threshold poses difficulties, since the number of active Fourier-components increase dramatically, resulting in steep temporal and spatial gradients. To overcome this difficulty we propose an efficient pseudospectral scheme which adaptively adjust the number of degrees of freedom. © 1990.
引用
收藏
页码:127 / 146
页数:20
相关论文
共 14 条
[1]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[2]   NUMERICAL EXPERIENCE WITH THE NONLINEAR SCHRODINGER-EQUATION [J].
HERBST, BM ;
MORRIS, JL ;
MITCHELL, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :282-305
[3]   MODULATION OF WATER-WAVES IN NEIGHBORHOOD OF KH ALMOST EQUAL TO 1.363 [J].
JOHNSON, RS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 357 (1689) :131-141
[4]   MARGINAL STATE OF MODULATIONAL INSTABILITY - NOTE ON BENJAMIN-FEIR INSTABILITY [J].
KAKUTANI, T ;
MICHIHIRO, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (12) :4129-4137
[5]   SPECTRAL CALCULATIONS OF ISOTROPIC TURBULENCE - EFFECIENT REMOVAL OF ALIASING INTERACTIONS [J].
PATTERSON, GS ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1971, 14 (11) :2538-+
[6]   USE OF SPECTRAL METHOD FOR 2-DIMENSIONAL AND 3-DIMENSIONAL GUIDING CENTER PLASMAS [J].
SALU, Y ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :68-78
[7]   CONSERVATIVE AND NONCONSERVATIVE SCHEMES FOR THE SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION [J].
SANZSERNA, JM ;
VERWER, JG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (01) :25-42
[8]   ANALYTICAL AND NUMERICAL ASPECTS OF CERTAIN NONLINEAR EVOLUTION-EQUATIONS .2. NUMERICAL, NONLINEAR SCHRODINGER-EQUATION [J].
TAHA, TR ;
ABLOWITZ, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (02) :203-230
[9]  
Tappert F.D, 1974, LECT APPL MATH, V15, P215
[10]  
Thyagaraja A., 1983, NONLINEAR WAVES