Ultrasensitive self-powered pressure sensing system

被引:78
作者
Luo, Jianjun [1 ]
Fan, Feng Ru [1 ,2 ]
Zhou, Tao [1 ]
Tang, Wei [1 ]
Xue, Fei [1 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Self-powered electronics; Pressure sensors; Triboelectric nanogenerator; Sensor integrations; Portable electronics;
D O I
10.1016/j.eml.2015.01.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Portable and flexible pressure sensors with highly sensitive and small size have great potential applications in areas such as wearable electronics, environmental monitoring, and medical equipment. Here, we demonstrate an integrated self-powered pressure sensing system made of a passive resistive pressure sensor and a triboelectric nanogenerator. Based on wrinkled and flexible polydimethylsiloxane films, the whole device is of sandwich structure with ultrahigh sensitivity to pressure (204.4 kPa-1), which is more than one order of magnitude higher than all previously reported flexible pressure sensors. And our system exhibits a very low detection limit, rapid response time, and long-term stability. In addition, we built a self-powered, portable visualization system for semi-quantitative analysis of pressure, which can directly convert a pressure information to visual display. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 38 条
[1]   The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer [J].
Bowden, N ;
Huck, WTS ;
Paul, KE ;
Whitesides, GM .
APPLIED PHYSICS LETTERS, 1999, 75 (17) :2557-2559
[2]   Fabricating microlens arrays by surface wrinkling [J].
Chan, Edwin P. ;
Crosby, Alfred J. .
ADVANCED MATERIALS, 2006, 18 (24) :3238-+
[3]   Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array [J].
Choong, Chwee-Lin ;
Shim, Mun-Bo ;
Lee, Byoung-Sun ;
Jeon, Sanghun ;
Ko, Dong-Su ;
Kang, Tae-Hyung ;
Bae, Jihyun ;
Lee, Sung Hoon ;
Byun, Kyung-Eun ;
Im, Jungkyun ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Park, Jong-Jin ;
Chung, U-In .
ADVANCED MATERIALS, 2014, 26 (21) :3451-3458
[4]   Nested self-similar wrinkling patterns in skins [J].
Efimenko, K ;
Rackaitis, M ;
Manias, E ;
Vaziri, A ;
Mahadevan, L ;
Genzer, J .
NATURE MATERIALS, 2005, 4 (04) :293-297
[5]   Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms [J].
Fan, Feng Ru ;
Luo, Jianjun ;
Tang, Wei ;
Li, Chaoyu ;
Zhang, Cuiping ;
Tian, Zhongqun ;
Wang, Zhong Lin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) :13219-13225
[6]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[7]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[8]   A wearable and highly sensitive pressure sensor with ultrathin gold nanowires [J].
Gong, Shu ;
Schwalb, Willem ;
Wang, Yongwei ;
Chen, Yi ;
Tang, Yue ;
Si, Jye ;
Shirinzadeh, Bijan ;
Cheng, Wenlong .
NATURE COMMUNICATIONS, 2014, 5
[9]   Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels [J].
Han, Chang Bao ;
Zhang, Chi ;
Li, Xiao Hui ;
Zhang, Limin ;
Zhou, Tao ;
Hu, Weiguo ;
Wang, Zhong Lin .
NANO ENERGY, 2014, 9 :325-333
[10]   Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system [J].
Han, Mengdi ;
Zhang, Xiao-Sheng ;
Sun, Xuming ;
Meng, Bo ;
Liu, Wen ;
Zhang, Haixia .
SCIENTIFIC REPORTS, 2014, 4