A KANTOROVICH-TYPE CONVERGENCE ANALYSIS FOR THE GAUSS-NEWTON-METHOD

被引:39
作者
HAUSSLER, WM
机构
关键词
D O I
10.1007/BF01389446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:119 / 125
页数:7
相关论文
共 17 条
[2]  
Dennis J. E., 1971, NONLINEAR FUNCTIONAL, P425
[3]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[4]  
Deuflhard P., 1980, Special Topics of Applied Mathematics. Functional Analysis, Numerical Analysis and Optimization. Proceedings of the Seminar, P129
[5]  
GRIEWANK A, 1983, UNPUB SOLVING NONLIN
[6]   VARIABLE STEPSIZE CONTROL FOR THE HOMOTOPY METHOD APPLIED TO ADEQUATE NON-LINEAR REGRESSION [J].
HAUSSLER, WM .
COMPUTING, 1982, 29 (04) :309-326
[7]   A LOCAL CONVERGENCE ANALYSIS FOR THE GAUSS-NEWTON AND LEVENBERG-MORRISON-MARQUARDT ALGORITHMS [J].
HAUSSLER, WM .
COMPUTING, 1983, 31 (03) :231-244
[8]  
HAUSSLER WM, 1981, THESIS TU BRAUNSCHWE
[9]  
HAUSSLER WM, 1984, METHODS OPERATIONS R, V51, P13
[10]  
Lawson C.L., 1974, SOLVING LEAST SQUARE, V1st ed.