A LOCAL CONVERGENCE ANALYSIS FOR THE GAUSS-NEWTON AND LEVENBERG-MORRISON-MARQUARDT ALGORITHMS

被引:4
作者
HAUSSLER, WM
机构
关键词
D O I
10.1007/BF02263433
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:231 / 244
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 1972, IMA J APPL MATH
[3]  
BOGGS PT, 1976, MATH COMPUT, V30, P199, DOI 10.1090/S0025-5718-1976-0395209-4
[4]  
BROWN KM, 1972, NUMER MATH, V18, P289
[5]  
DENNIS JE, 1981, ACM T MATH SOFTWARE, V7, P348, DOI 10.1145/355958.355965
[6]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[7]  
DEUFLHARD P, 1980, SPECIAL TOPICS APPLI
[8]  
FLETCHER R, 1979, PRACTICAL METHODS OP
[9]   SOME APPLICATIONS OF THE PSEUDOINVERSE OF A MATRIX [J].
GREVILLE, TNE .
SIAM REVIEW, 1960, 2 (01) :15-22
[10]   VARIABLE STEPSIZE CONTROL FOR THE HOMOTOPY METHOD APPLIED TO ADEQUATE NON-LINEAR REGRESSION [J].
HAUSSLER, WM .
COMPUTING, 1982, 29 (04) :309-326