A LOCAL CONVERGENCE ANALYSIS FOR THE GAUSS-NEWTON AND LEVENBERG-MORRISON-MARQUARDT ALGORITHMS

被引:4
作者
HAUSSLER, WM
机构
关键词
D O I
10.1007/BF02263433
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:231 / 244
页数:14
相关论文
共 20 条
[11]  
Kowalik J., 1968, METHODS UNCONSTRAINE
[12]  
Lawson C.L., 1974, SOLVING LEAST SQUARE, V1st ed.
[13]  
Levenberg K., 1944, Q APPL MATH, V2, P164, DOI [DOI 10.1090/QAM/10666, 10.1090/qam/10666]
[14]  
MOORE EH, 1919, B AM MATH SOC, V26, P394
[15]  
Morrison DD, 1960, JPL SEMINAR TRACKING, P1
[16]  
Ortega J.M., 1970, ITERATIVE SOLUTION N
[17]  
Penrose R., 1955, P CAMBRIDGE PHILOS S, V51, P406, DOI [10.1017/S0305004100030401, DOI 10.1017/S0305004100030401]
[18]   LEAST SQUARES PROBLEM AND PSEUDO-INVERSES [J].
PETERS, G ;
WILKINSON, JH .
COMPUTER JOURNAL, 1970, 13 (03) :309-+
[19]  
Schwetlick H, 1979, NUMERISCHE LOSUNG NI
[20]   AFFINE INVARIANT CONVERGENCE RESULTS FOR NEWTONS METHOD [J].
YPMA, TJ .
BIT, 1982, 22 (01) :108-118