NITROGEN DIOXIDE-INDUCED ACUTE LUNG INJURY IN SHEEP

被引:9
作者
JANUSZKIEWICZ, AJ
MAYORGA, MA
机构
[1] Department of Respiratory Research, Division of Medicine, Walter Reed Army Institute of Research, Washington
关键词
SHEEP; NITROGEN DIOXIDE; LUNG MECHANICS; HEMODYNAMICS; BRONCHOALVEOLAR LAVAGE;
D O I
10.1016/0300-483X(94)90101-5
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Lung mechanics; hemodynamics and blood chemistries were assessed in sheep (Ovis aries) before, and up to 24 h following, a 15-20 min exposure to either air (control) or approximately 500 ppm nitrogen dioxide (NO2). Histopathologic examinations of lung tissues were performed 24 h after exposure. Nose-only and lung-only routes of exposure were compared for effects on NO2 pathogenesis. Bronchoalveolar lavage fluids from air- and NO2-exposed sheep were analyzed for biochemical and cellular signs of NO2 insult. The influence of breathing pattern on NO2 dose was also assessed. Five hundred ppm NO2 exposure of intubated sheep (lung-only exposure) was marked by a statistically significant, albeit small, blood methemoglobin increase. The exposure induced an immediate tidal volume decrease, and an increase in both breathing rate and inspired minute ventilation. Pulmonary function, indexed by lung resistance and dynamic lung compliance, progressively deteriorated after exposure. Maximal lung resistance and dynamic lung compliance changes occurred at 24 h post exposure, concomitant with arterial hypoxemia. Bronchoalveolar lavage fluid epithelial cell number and total protein were significantly increased while macrophage number was significantly decreased within the 24 h post-exposure period. Histopathologic examination of lung tissue 24 h after NO2 revealed patchy edema, mild hemorrhage and polymorphonuclear and mononuclear leukocyte infiltration. The NO2 toxicologic profile was significantly attenuated when sheep were exposed to the gas through a face mask (nose-only exposure). Respiratory pattern was not significantly altered, lung mechanics changes were minimal, hypoxemia did not occur, and pathologic evidence of exudation was not apparent in nose-only, NO2-exposed sheep. The qualitative responses of this large animal species to high-level NO2 supports the concept of size dependent species sensitivity to NO2. In addition, when inspired minute ventilation was used as a dose-determinant, a linear relationship between NO2 dose and lung resistance was found. The importance of these findings, NO2 dose-determinants, and the utility of sheep as a large animal inhalation model are discussed.
引用
收藏
页码:279 / 300
页数:22
相关论文
共 37 条
[11]  
DODD KT, 1992, PHYSIOLOGIST, V35, P232
[12]   RESPIRATORY FACTORS DETERMINING TISSUE CONCENTRATIONS OF INHALED TOXIC SUBSTANCES [J].
DUBOIS, AB ;
ROGERS, RM .
RESPIRATION PHYSIOLOGY, 1968, 5 (01) :34-&
[13]  
FITZPATRICK TM, 1993, AM REV RESPIR DIS, V147, pA72
[14]   INHALED NITRIC-OXIDE - A SELECTIVE PULMONARY VASODILATOR REVERSING HYPOXIC PULMONARY VASOCONSTRICTION [J].
FROSTELL, C ;
FRATACCI, MD ;
WAIN, JC ;
JONES, R ;
ZAPOL, WM .
CIRCULATION, 1991, 83 (06) :2038-2047
[15]   LUNG-MECHANICS AND AIRWAY REACTIVITY IN SHEEP DURING DEVELOPMENT OF OXYGEN-TOXICITY [J].
FUKUSHIMA, M ;
KING, LS ;
KANG, KH ;
BANERJEE, M ;
NEWMAN, JH .
JOURNAL OF APPLIED PHYSIOLOGY, 1990, 69 (05) :1779-1785
[16]  
GARDNER DE, 1979, ENV HLTH PERSPECT, V30, P113
[17]   CONCENTRATION RESPONSE RELATIONSHIPS OF RAT LUNGS TO EXPOSURE TO OXIDANT AIR-POLLUTANTS - A CRITICAL TEST OF HABER LAW FOR OZONE AND NITROGEN-DIOXIDE [J].
GELZLEICHTER, TR ;
WITSCHI, H ;
LAST, JA .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1992, 112 (01) :73-80
[18]   TIGHT JUNCTION ALTERATIONS OF RESPIRATORY EPITHELIUM FOLLOWING LONG-TERM NO2 EXPOSURE AND RECOVERY [J].
GORDON, RE ;
SOLANO, D ;
KLEINERMAN, J .
EXPERIMENTAL LUNG RESEARCH, 1986, 11 (03) :179-193
[19]  
GURLEY LR, 1989, TECHNIQUES PROTEIN C, P479
[20]   COLLAGEN BREAKDOWN AND NITROGEN-DIOXIDE INHALATION [J].
HATTON, DV ;
LEACH, CS ;
NICOGOSSIAN, AE ;
FERRANTE, N .
ARCHIVES OF ENVIRONMENTAL HEALTH, 1977, 32 (01) :33-36