FORMATION OF THE LUXR PROTEIN IN THE VIBRIO-FISCHERI-LUX SYSTEM IS CONTROLLED BY HTPR THROUGH THE GROESL PROTEINS

被引:49
作者
ADAR, YY [1 ]
SIMAAN, M [1 ]
ULITZUR, S [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT FOOD ENGN & BIOTECHNOL,IL-32000 HAIFA,ISRAEL
关键词
D O I
10.1128/jb.174.22.7138-7143.1992
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The transcription of the luminescence (lux) system of Vibrio fischeri is regulated by the LuxR protein and an autoinducer. We previously showed that apart from these regulatory elements, the transcription of the lux system is negatively controlled by the LexA protein and positively controlled by the HtpR protein (sigma32). This study was conducted in order to elucidate the mode of action of the HtpR protein. Using luxR-lacZ fused genes, we showed that the HtpR protein is essential for the maximum expression of beta-galactosidase activity in Escherichia coli lac mutant cells. Using this construct, we also demonstrated that luxR is preferentially expressed toward the end of the logarithmic phase of growth. Starvation and addition of ethanol significantly advanced the appearance of beta-galactosidase activity in htpR+ cells. The luminescence system of E. coli htpR+ cells harboring the pChv1 plasmid with a deletion in the luxI gene is induced in the presence of low and constant concentrations (150 pg/ml) of the inducer only at a late stage of the logarithmic phase of growth. When the cellular LuxR content is reduced, following 23 generations of exponential growth in Luria broth, a mid-log-phase culture does not respond to the inducer (150 pg/ml). On the basis of the above observations we suggest that the HtpR protein controls the formation of V. fischeri LuxR protein. Preliminary findings indicate that the HtpR protein acts through the chaperonins GroESL. E. coli htpR/pChv1 cells retained their full level of in vivo and in vitro luciferase activities in the presence of multiple copies of groESL genes. The possibility that GroESL proteins stabilize the native form of LuxR protein is discussed.
引用
收藏
页码:7138 / 7143
页数:6
相关论文
共 27 条
[21]   CELLULAR CONTROL OF SYNTHESIS AND ACTIVITY OF BACTERIAL LUMINESCENT SYSTEM [J].
NEALSON, KH ;
PLATT, T ;
HASTINGS, JW .
JOURNAL OF BACTERIOLOGY, 1970, 104 (01) :313-&
[22]   THE VIBRIO-FISCHERI LUXR PROTEIN IS CAPABLE OF BIDIRECTIONAL STIMULATION OF TRANSCRIPTION AND BOTH POSITIVE AND NEGATIVE REGULATION OF THE LUXR GENE [J].
SHADEL, GS ;
BALDWIN, TO .
JOURNAL OF BACTERIOLOGY, 1991, 173 (02) :568-574
[23]  
SIMAAN M, 1990, THESIS TECHNION ISRA
[24]   A NEW, SENSITIVE AND SIMPLE BIOLUMINESCENCE TEST FOR MUTAGENIC COMPOUNDS [J].
ULITZUR, S ;
WEISER, I ;
YANNAI, S .
MUTATION RESEARCH, 1980, 74 (02) :113-124
[25]   THE REGULATORY CONTROL OF THE BACTERIAL LUMINESCENCE SYSTEM - A NEW VIEW [J].
ULITZUR, S .
JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, 1989, 4 (01) :317-325
[26]   THE TRANSCRIPTION OF BACTERIAL LUMINESCENCE IS REGULATED BY SIGMA-32 [J].
ULITZUR, S ;
KUHN, J .
JOURNAL OF BIOLUMINESCENCE AND CHEMILUMINESCENCE, 1988, 2 (02) :81-93
[27]   INDUCTION OF THE HEAT-SHOCK REGULON OF ESCHERICHIA-COLI MARKEDLY INCREASES PRODUCTION OF BACTERIAL-VIRUSES AT HIGH-TEMPERATURES [J].
WIBERG, JS ;
MOWREYMCKEE, MF ;
STEVENS, EJ .
JOURNAL OF VIROLOGY, 1988, 62 (01) :234-245