BOUNDARY CONTROL, WAVE FIELD CONTINUATION AND INVERSE PROBLEMS FOR THE WAVE-EQUATION

被引:30
作者
BELISHEV, MI
KURYLEV, YV
机构
[1] Leningrad Branch, the Steklov Mathematical Institute (LOMI) Fontanka 27, Leningrad
关键词
D O I
10.1016/0898-1221(91)90130-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of the wave field continuation and recovering of coefficients for the wave equation in a bounded domain in R(n), n > 1. The inverse data is a response operator mapping Neumann boundary data into Dirichlet ones. The reconstruction procedure is local. This means that, observing boundary response for larger times, we may recover coefficients deeper in the domain. The approach is based upon ideas and results of the boundary control theory, yielding some natural multidimensional analogs of the classical Gel'fand-Levitan-Krein equations.
引用
收藏
页码:27 / 52
页数:26
相关论文
共 45 条
[11]  
BELISHEV MI, 1987, DOKL AKAD NAUK SSSR+, V297, P524
[12]  
BELISHEV MI, 1989, ZAP NAUCHN SEMIN LOM, V179, P14
[13]  
BELISHEV MI, 1990, PI90 PREPR
[14]  
BELISHEV MI, 1990, ZAP NAUCHN SEMIN LOM, V186, P37
[15]  
Blagoveshchenskii A. S., 1971, PROBL MATH PHYS, V5, P38
[16]  
Blagoveshchenskii A. S., 1971, P STEKLOV I MATH, V115, P28
[17]  
BLAGOVESTCHENSK.AS, 1981, DIFF URAVN, V28, P1434
[18]  
Cheney M, 1990, Int J Imaging Syst Technol, V2, P66, DOI 10.1002/ima.1850020203
[19]  
CHENEY M, 1989, WAVE MOTION, V11, P99
[20]  
GROMOLL D, 1968, RIEMANNISCHE GEOMETR, P287