ON THE COHOMOLOGY OF THE NONCRITICAL W-STRING

被引:8
作者
BERGSHOEFF, E
DEBOER, J
DEROO, M
TJIN, T
机构
[1] UNIV MUNICH,D-80333 MUNICH,GERMANY
[2] SUNY STONY BROOK,INST THEORET PHYS,STONY BROOK,NY 11794
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(94)90387-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the cohomology structure of a general noncritical W(N) string. We do this by introducing a new basis in the Hilbert space in which the BRST operator splits into a ''nested'' sum of nilpotent BRST operators. We give explicit details for the case N = 3. In that case the BRST operator Q can be written as the sum of two, mutually anticommuting, nilpotent BRST operators: Q = Q0 + Q1. We argue that if one chooses for the Liouville sector a (p,q) W3 minimal model then the cohomology of the Q1 operator is closely related to a (p, q) Virasoro minimal model. In particular, the special case of a (4,3) unitary W3 minimal model with central charge c = 0 leads to a c = 1/2 Ising model in the Q1 cohomology. Despite all this, noncritical W3 strings are not identical to noncritical Virasoro strings.
引用
收藏
页码:379 / 408
页数:30
相关论文
共 53 条
[1]   A DERIVATION OF THE BRST OPERATOR FOR NONCRITICAL W-STRINGS [J].
BERGSHOEFF, E ;
SEVRIN, A ;
SHEN, X .
PHYSICS LETTERS B, 1992, 296 (1-2) :95-103
[2]   A BRST ANALYSIS OF W-SYMMETRIES [J].
BERGSHOEFF, E ;
BOONSTRA, HJ ;
PANDA, S ;
DEROO, M .
NUCLEAR PHYSICS B, 1994, 411 (2-3) :717-744
[3]   ON THE BRST OPERATOR OF W-STRINGS [J].
BERGSHOEFF, E ;
BOONSTRA, HJ ;
DEROO, M ;
PANDA, S ;
SEVRIN, A .
PHYSICS LETTERS B, 1993, 308 (1-2) :34-41
[4]  
BERKOVITS N, 1993, HUTP93A031
[5]  
BERKOVITS N, 1993, KCLTH9315
[6]   A BRST OPERATOR FOR NONCRITICAL W-STRINGS [J].
BERSHADSKY, M ;
LERCHE, W ;
NEMESCHANSKY, D ;
WARNER, NP .
PHYSICS LETTERS B, 1992, 292 (1-2) :35-41
[7]   EXTENDED N = 2 SUPERCONFORMAL STRUCTURE OF GRAVITY AND W-GRAVITY COUPLED TO MATTER [J].
BERSHADSKY, M ;
LERCHE, W ;
NEMESCHANSKY, D ;
WARNER, NP .
NUCLEAR PHYSICS B, 1993, 401 (1-2) :304-347
[8]   NON-LINEARLY EXTENDED VIRASORO ALGEBRAS - NEW PROSPECTS FOR BUILDING STRING THEORIES [J].
BILAL, A ;
GERVAIS, JL .
NUCLEAR PHYSICS B, 1989, 326 (01) :222-236
[9]  
BOTT R, 1986, DIFFERENTIAL FORMS A
[10]   BRST ANALYSIS OF PHYSICAL STATES FOR 2D GRAVITY COUPLED TO C-LESS-THAN-OR-EQUAL-TO-1 MATTER [J].
BOUWKNEGT, P ;
MCCARTHY, J ;
PILCH, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (03) :541-560