ANISOTROPIC SINGULAR PERTURBATIONS - THE VECTORIAL CASE

被引:50
作者
BARROSO, AC
FONSECA, I
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500028778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the GAMMA(L1(OMEGA))-limit of the sequence J(epsilon)(u) = 1/epsilon E(epsilon)(u), where E(epsilon) is the family of anisotropic perturbations E(epsilon)(u):= integral(OMEGA) W(u(x)) dx + epsilon2 integral(OMEGA) h2(x, del u(x)) dx of the nonconvex functional of vector-valued functions E0(u)= integral(OMEGA) W(u(x)) dx. The proof relies on the blow-up argument introduced by Fonseca and Muller.
引用
收藏
页码:527 / 571
页数:45
相关论文
共 34 条
  • [21] LOCAL MINIMIZERS AND SINGULAR PERTURBATIONS
    KOHN, RV
    STERNBERG, P
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 : 69 - 84
  • [22] Maso G. Dal, 1986, ANN MAT PUR APPL, V144, P347
  • [23] MODICA L, 1987, ARCH RATION MECH AN, V98, P123, DOI 10.1007/BF00251230
  • [24] MULLER S, IN PRESS INDIANA U M
  • [25] OWEN NC, 1991, NONLINEAR ANAL, V78, P705
  • [26] Reshetnyak Y. G., 1968, SIBERIAN MATH J+, V9, P1039
  • [27] Reshetnyak Yu.G., 1968, SIB MAT ZH, V9, P1386
  • [28] Stein E. M., 1970, SINGULAR INTEGRAL DI
  • [29] STERNBERG P, 1988, ARCH RATION MECH AN, V101, P209
  • [30] Tartar L., 1979, RES NOTES MATH NONLI, V39, P136