This paper describes the first reported use of diethylaluminium hydride-trimethylamine adduct (DEAlH-NMe3) for the growth of GaAs/GaAlAs power heterojunction bipolar transistors (HBTs) by chemical beam epitaxy (CBE). This precursor possesses a significantly higher vapour pressure than the more conventionally used triethylaluminium (TEA), and leads to much less stringent requirements for bubbler and gas-line heating, and also much-improved GaAs/GaAlAs heterojunction definition when no carrier gas is employed. The use of all-gaseous n- and p-type dopants offers significant technological advantages in CBE, and the current paper also provides the first report of the use of hydrogen sulphide for n-type doping of CBE-grown GaAlAs HBT emitter regions. In conclusion, DC and RF data obtained from the heterojunction bipolar transistors fabricated to date are described. A DC gain of 40 has already been measured and encouraging early data obtained from RF-probed devices are also presented.