RESTRICTIONS ON MICROSTRUCTURE

被引:93
作者
BHATTACHARYA, K
FIROOZYE, NB
JAMES, RD
KOHN, RV
机构
[1] UNIV ILLINOIS, DEPT MATH, URBANA, IL 61801 USA
[2] UNIV MINNESOTA, MINNEAPOLIS, MN 55455 USA
[3] COURANT INST, NEW YORK, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500022381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following question: given a set of matrices K with no rank-one connections, does it support a nontrivial Young measure limit of gradients? Our main results are these: (a) a Young measure can be supported on four incompatible matrices; (b) in two space dimensions, a Young measure cannot be supported on finitely many incompatible elastic wells; (c) in three or more space dimensions, a Young measure can be supported on three incompatible elastic wells; and (d) if K supports a nontrivial Young measure with mean value 0, then the linear span of K must contain a matrix of rank one.
引用
收藏
页码:843 / 878
页数:36
相关论文
共 52 条
[41]   ON TARTAR CONJECTURE [J].
SVERAK, V .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (04) :405-412
[42]   RANK-ONE CONVEXITY DOES NOT IMPLY QUASICONVEXITY [J].
SVERAK, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :185-189
[43]   NEW EXAMPLES OF QUASI-CONVEX FUNCTIONS [J].
SVERAK, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (04) :293-300
[44]  
SVERAK V, 1993, MICROSTRUCTURE PHASE, P183
[45]  
Sverak Vladimir, REGULARITY MONGE AMP
[46]  
Tartar L., 1983, NATO ADV SCI I SER C, V111, P263
[47]  
Tartar L., 1979, RES NOTES MATH NONLI, V39, P136
[48]  
TARTAR L, 1993, MICROSTRUCTURE PHASE, P191
[49]  
Terpstra FJ., 1938, MATH ANN, V116, P166, DOI [10.1007/BF01597353, DOI 10.1007/BF01597353)]
[50]  
ZHANG K, IN PRESS T AMS