SU(1,1) LIE ALGEBRAIC APPROACH TO LINEAR DISSIPATIVE PROCESSES IN QUANTUM OPTICS

被引:62
作者
BAN, M
机构
[1] Advanced Research Laboratory, Hitachi, Ltd., Hatoyama
关键词
D O I
10.1063/1.529540
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An SU(1,1) Lie algebraic formulation is presented for investigating the linear dissipative processes in quantum optical systems. The Liouville space formulation, thermo field dynamics, and the disentanglement theorem of SU(1,1) Lie algebra play essential roles in this formulation. In the Liouville space, the time-evolution equation for the state vector of a system is solved algebraically by using the decomposition formulas of SU(1,1) Lie algebra and the thermal state condition of thermo field dynamics. The presented formulation is used for investigating a dissipative nonlinear oscillator, the quantum mechanical model of phase modulation, and the photon echo in the localized electron-phonon system. This algebraic formulation gives a systematic treatment for investigating the phenomena in quantum optical systems.
引用
收藏
页码:3213 / 3228
页数:16
相关论文
共 78 条
[51]  
Miranowicz A., 1990, Quantum Optics, V2, P253, DOI 10.1088/0954-8998/2/3/006
[52]   ON THE METHOD OF THE 3RD QUANTIZATION [J].
NAMBU, Y .
PROGRESS OF THEORETICAL PHYSICS, 1949, 4 (03) :331-346
[53]  
OJIMA I, 1981, ANN PHYS, V139, P1
[54]   COHERENT STATES FOR ARBITRARY LIE GROUP [J].
PERELOMOV, AM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (03) :222-+
[55]  
PERELOMOV M, 1977, SOV PHYS USP, V20, P703
[56]   EXACT QUANTUM STATISTICS OF A NONLINEAR DISSIPATIVE OSCILLATOR EVOLVING FROM AN ARBITRARY STATE [J].
PERINOVA, V ;
LUKS, A .
PHYSICAL REVIEW A, 1990, 41 (01) :414-420
[57]  
PRIGOGINE I, 1973, CHEM SCRIPTA, V4, P5
[58]   BAKER-CAMPBELL-HAUSDORFF FORMULAS AND SPHERICAL AND HYPERBOLIC ROTATIONS [J].
SANTIAGO, MAM ;
VAIDYA, AN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (06) :897-904
[59]   REAL-TIME GREEN-FUNCTIONS IN MANY-BODY PROBLEMS [J].
SCHMUTZ, M .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1978, 30 (01) :97-106
[60]  
Shen Y.-R., 1984, PRINCIPLES NONLINEAR